A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Customer satisfaction prediction with Michigan-style learning classifier system
2019
SN Applied Sciences
Many different classification algorithms can be use in order to analyze, classify and predict data. Learning classifier system (LCS) which is known as a genetic base machine learning system, combines the machine learning with evolutionary computing and other heuristics to produce an adaptive system that learns to solve a particular problem. This paper uses the Michigan style LCS, in the context of bank customer satisfaction to classify customers into two different groups: unsatisfied/satisfied
doi:10.1007/s42452-019-1493-1
fatcat:4hpv3yadk5c3tpm25tihmetncq