Sensitivity of asymmetric Oxygen Minimum Zones to remineralization rate and mixing intensity in the tropical Pacific using a basin-scale model (OGCM-DMEC V1.2) [post]

Kai Wang, Xiujun Wang, Raghu Murtugudde, Dongxiao Zhang, Rong-Hua Zhang
2021 unpublished
Abstract. The tropical Pacific Ocean holds the world's two largest Oxygen Minimum Zones (OMZs), showing a prominent hemispheric asymmetry, with a much stronger and broader OMZ north of the equator. However, many models have difficulties in reproducing the observed asymmetric OMZs in the tropical Pacific. Here, we apply a fully coupled basin-scale model (OGCM-DMEC V1.2) to evaluate the impacts of remineralization rate and the intensity of vertical mixing on the dynamics of OMZs in the tropical
more » ... cific. We first utilize observational data of dissolved oxygen (DO), dissolved organic nitrogen (DON) and oxygen consumption to calibrate and validate the basin-scale model. Our model experiments demonstrate that enhanced vertical mixing combined with reduced remineralization rate can significantly improve our model capability of reproducing the asymmetric OMZs. Our study shows that DO is more sensitive to biological processes over 200–400 m but to physical processes over 400–1000 m. Enhanced vertical mixing not only causes an increase in DO supply at mid-depth, but also results in lower rates of biological consumption in the OMZs, which is associated with redistribution of DON. Our analyses demonstrate that weaker physical supply in the ETNP is the dominant process responsible for the asymmetry of the lower OMZs whereas greater biological consumption to the north plays a larger role in regulating the upper OMZs. This study highlights the complex roles of physical supply and biological consumption in shaping the asymmetric OMZs in the tropical Pacific.
doi:10.5194/gmd-2020-431 fatcat:ml6afljtkfckvcjlvn3t4vuara