Grape Drying: Current Status and Future Trends [chapter]

Jun Wang, Arun S. Mujumdar, Weisong Mu, Jianying Feng, Xiaoshuan Zhang, Qian Zhang, Xiao-Ming Fang, Zhen-Jiang Gao, Hong-Wei Xiao
2016 Grape and Wine Biotechnology  
With high moisture and sugar content, fresh grapes respire and transpire actively after harvest, which contribute to quality loss. Drying can process grapes into raisins for longer shelf-life as well as dehydrated grapes, which can be used for wines or juice production. The pre-treatments, drying method and drying conditions, can significantly influence the quality of final products. In this chapter, firstly, different pretreatments as a necessary operation previous to the drying of grapes into
more » ... raisins is introduced. These pre-treatments include chemical pre-treatment, physical pretreatment, and blanching. In addition, the quality and drying characteristics of different pre-treatments is summarized too. Secondly, the current status of different technologies for grape drying and their effects on drying kinetics and quality attributes of seedless grapes are described to highlight the advantages and disadvantages of each drying method. These drying methods include the traditional open sun drying, shade drying, hot-air drying, freezing drying, microwave drying, as well as the vacuum impulsed drying. Thirdly, influences of drying on bioactive substances (flavonoids, phenolics, anthocyanin, and resveratrol) and antioxidant capacity of grape by-products including seed, skin, stem, and stalk are also examined. Finally, the future research trends of grape and its by-product drying are indentified and discussed.
doi:10.5772/64662 fatcat:wlioopy6fbcidpoorthqdyqixm