Parameterized Complexity of 1-Planarity [chapter]

Michael J. Bannister, Sergio Cabello, David Eppstein
<span title="">2013</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
What is 1-planarity? A graph is 1-planar if it can be drawn in the plane (vertices as points, edges as curves disjoint from non-incident vertices) so that each edge is crossed at most once (in one point, by one edge) E.g. K 2,7 is planar, K 3,6 is 1-planar, and K 4,5 is not 1-planar [Czap and Hudák 2012]
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1007/978-3-642-40104-6_9</a> <a target="_blank" rel="external noopener" href="">fatcat:ywrfrwdoc5dvlecebsfyrvhacm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>