A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Regularization in ResNet with Stochastic Depth
[article]
2021
Regularization plays a major role in modern deep learning. From classic techniques such as L1,L2 penalties to other noise-based methods such as Dropout, regularization often yields better generalization properties by avoiding overfitting. Recently, Stochastic Depth (SD) has emerged as an alternative regularization technique for residual neural networks (ResNets) and has proven to boost the performance of ResNet on many tasks [Huang et al., 2016]. Despite the recent success of SD, little is
doi:10.48550/arxiv.2106.03091
fatcat:a7frm2nybnf55grr3amffjh5ve