The Eastern Arm of M83 Revisited: High‐Resolution Mapping of12CO 1–0 Emission

Richard J. Rand, Steven D. Lord, James L. Higdon
1999 Astrophysical Journal  
We have used the Owens Valley Millimeter Array to map 12CO (J=1-0) along a 3.5 kpc segment of M83's eastern spiral arm at resolutions of 6.5"x3.5", 10", and 16". The CO emission in most of this segment lies along the sharp dust lane demarking the inner edge of the spiral arm, but beyond a certain point along the arm the emission shifts downstream from the dust lane to become better aligned with the young stars seen in blue and H-beta images. This morphology resembles that of the western arm of
more » ... the western arm of M100. Three possibilities, none of which is wholly satisfactory, are considered to explain the deviation of the CO arm from the dust lane: heating of the CO by UV radiation from young stars, heating by low-energy cosmic rays, and a molecular medium consisting of two (diffuse and dense) components which react differently to the density wave. Regardless, the question of what CO emission traces along this spiral arm is a complicated one. Strong tangential streaming is observed where the arm crosses the kinematic major axis of the galaxy, implying that the shear becomes locally prograde in the arms. Inferred from the streaming is a very high gas surface density of about 230 solar masses/pc**2 and an arm-interarm contrast greater than 2.3 in the part of the arm near the major axis. Using two different criteria, we find that the gas at this location is well above the threshold for gravitational instability -- much more clearly so than in either M51 or M100.
doi:10.1086/306897 fatcat:pnn4hpryqfhqtlycry3lg74x5i