Automorphism covariant representations of the holonomy-flux lowast-algebra

Andrzej Okołów, Jerzy Lewandowski
2005 Classical and quantum gravity  
We continue an analysis of representations of cylindrical functions and fluxes which are commonly used as elementary variables of Loop Quantum Gravity. We consider an arbitrary principal bundle of a compact connected structure group and following Sahlmann's ideas define a holonomy-flux *-algebra whose elements correspond to the elementary variables. There exists a natural action of automorphisms of the bundle on the algebra; the action generalizes the action of analytic diffeomorphisms and
more » ... transformations on the algebra considered in earlier works. We define the automorphism covariance of a *-representation of the algebra on a Hilbert space and prove that the only Hilbert space admitting such a representation is a direct sum of spaces L^2 given by a unique measure on the space of generalized connections. This result is a generalization of our previous work (Class. Quantum. Grav. 20 (2003) 3543-3567, gr-qc/0302059) where we assumed that the principal bundle is trivial, and its base manifold is R^d.
doi:10.1088/0264-9381/22/4/002 fatcat:5wiyev3xpfhljfa32ezeambit4