Genomics in cardiac metabolism

J.L. Samuel, M.C. Schaub, M. Zaugg, M. Mamas, W.B. Dunn, B. Swynghedauw
2008 Journal of Molecular and Cellular Cardiology  
Cell biology is in transition from reductionism to a more integrated science. Large-scale analysis of genome structure, gene expression, and metabolites are new technologies available for studying cardiac metabolism in diseases known to modify cardiac function. These technologies have several limitations and this review aims both to assess and take a critical look at some important results obtained in genomics restricted to molecular genetics, transcriptomics and metabolomics of cardiac
more » ... sm in pathophysiological processes known to alter myocardial function. Therefore, our goal was to delineate new signalling pathways and new areas of research from the vast amount of data already published on genomics as applied to cardiac metabolism in diseases such as coronary heart disease, heart failure, and ischaemic reperfusion. Cell biology is in transition from reductionism to a more integrated science. Large-scale analysis of genome structure, gene expression, and metabolites are new technologies available for studying cardiac metabolism in diseases known to modify cardiac function. These technologies have several limitations and this review aims both to assess and take a critical look at some important results obtained in genomics restricted to molecular genetics, transcriptomics and metabolomics of cardiac metabolism in pathophysiological processes known to alter myocardial function. Therefore, our goal was to delineate new signalling pathways and new areas of research from the vast amount of data already published on genomics as applied to cardiac metabolism in diseases such as coronary heart disease, heart failure, and ischaemic reperfusion.
doi:10.1016/j.yjmcc.2008.02.230 fatcat:ej5hklg5izhzjoadhgvzr4papm