Learning 3D Keypoint Descriptors for Non-rigid Shape Matching [chapter]

Hanyu Wang, Jianwei Guo, Dong-Ming Yan, Weize Quan, Xiaopeng Zhang
<span title="">2018</span> <i title="Springer International Publishing"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
In this paper, we present a novel deep learning framework that derives discriminative local descriptors for 3D surface shapes. In contrast to previous convolutional neural networks (CNNs) that rely on rendering multi-view images or extracting intrinsic shape properties, we parameterize the multi-scale localized neighborhoods of a keypoint into regular 2D grids, which are termed as 'geometry images'. The benefits of such geometry images include retaining sufficient geometric information, as well
more &raquo; ... as allowing the usage of standard CNNs. Specifically, we leverage a triplet network to perform deep metric learning, which takes a set of triplets as input, and a newly designed triplet loss function is minimized to distinguish between similar and dissimilar pairs of keypoints. At the testing stage, given a geometry image of a point of interest, our network outputs a discriminative local descriptor for it. Experimental results for non-rigid shape matching on several benchmarks demonstrate the superior performance of our learned descriptors over traditional descriptors and the state-of-the-art learning-based alternatives.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-030-01237-3_1">doi:10.1007/978-3-030-01237-3_1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/adbvhdwaerfynjdshpkhpxyssm">fatcat:adbvhdwaerfynjdshpkhpxyssm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190819012856/http://openaccess.thecvf.com:80/content_ECCV_2018/papers/Hanyu_Wang_Learning_3D_Keypoint_ECCV_2018_paper.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/84/a0/84a0f6db2b7155a83728101728794713898a859a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-030-01237-3_1"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>