Twin Neural Networks for the Classification of Large Unbalanced Datasets

Jayadeva, Himanshu Pant, Mayank Sharma, Sumit Soman
2019 Neurocomputing  
Twin Support Vector Machines (TWSVMs) have emerged an efficient alternative to Support Vector Machines (SVM) for learning from imbalanced datasets. The TWSVM learns two non-parallel classifying hyperplanes by solving a couple of smaller sized problems. However, it is unsuitable for large datasets, as it involves matrix operations. In this paper, we discuss a Twin Neural Network (Twin NN) architecture for learning from large unbalanced datasets. The Twin NN also learns an optimal feature map,
more » ... owing for better discrimination between classes. We also present an extension of this network architecture for multiclass datasets. Results presented in the paper demonstrate that the Twin NN generalizes well and scales well on large unbalanced datasets.
doi:10.1016/j.neucom.2018.07.089 fatcat:d7r7cwabhvep7dg3tx6bx2ym2y