Small UAVs-supported Autonomous Generation of Fine-grained 3D Indoor Radio Environmental Maps [article]

Ken Mendes, Filip Lemic, Jeroen Famaey
2021 arXiv   pre-print
Radio Environmental Maps (REMs) are a powerful tool for enhancing the performance of various communication and networked agents. However, generating REMs is a laborious undertaking, especially in complex 3-Dimensional (3D) environments, such as indoors. To address this issue, we propose a system for autonomous generation of fine-grained REMs of indoor 3D spaces. In the system, multiple small indoor Unmanned Aerial Vehicles (UAVs) are sequentially used for 3D sampling of signal quality
more » ... . The collected readings are streamlined to a Machine Learning (ML) system for its training and, once trained, the system is able to predict the signal quality at unknown 3D locations. The system enables automated and autonomous REM generation, and can be straightforwardly deployed in new environments. In addition, the system supports REM sampling without self-interference and is technology-agnostic, as long as the REM-sampling receivers features suitable sizes and weights to be carried by the UAVs. In the demonstration, we instantiate the system design using two UAVs and show its capability of visiting 72 waypoints and gathering thousands of Wi-Fi data samples. Our results also include an instantiation of the ML system for predicting the Received Signal Strength (RSS) of known Wi-Fi Access Points (APs) at locations not visited by the UAVs.
arXiv:2111.03451v1 fatcat:hiqgmbsoxrh2vnloqccl5djhz4