A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Multi-Label Noise Robust Collaborative Learning Model for Remote Sensing Image Classification
[article]
2021
arXiv
pre-print
The development of accurate methods for multi-label classification (MLC) of remote sensing (RS) images is one of the most important research topics in RS. Methods based on Deep Convolutional Neural Networks (CNNs) have shown strong performance gains in RS MLC problems. However, CNN-based methods usually require a high number of reliable training images annotated by multiple land-cover class labels. Collecting such data is time-consuming and costly. To address this problem, the publicly
arXiv:2012.10715v4
fatcat:yadvadp5sbbnjo27rpkehshfpi