A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Products of Composition and Differentiation between the Fractional Cauchy Spaces and the Bloch-Type Spaces
2021
Journal of Function Spaces
The operators D C Φ and C Φ D are defined by D C Φ f = f ∘ Φ ′ and C Φ D f = f ′ ∘ Φ where Φ is an analytic self-map of the unit disc and f is analytic in the disc. A characterization is provided for boundedness and compactness of the products of composition and differentiation from the spaces of fractional Cauchy transforms F α to the Bloch-type spaces B β , where α > 0 and β > 0 . In the case β < 2 , the operator D C Φ : F α ⟶ B β is compact ⇔ D C Φ : F α ⟶ B β is bounded ⇔ Φ ′ ∈ B β , Φ Φ ′
doi:10.1155/2021/9991716
fatcat:n2o3drbkdzfgrnztduhaslewjm