A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Hochster duality in derived categories and point-free reconstruction of schemes
2016
Transactions of the American Mathematical Society
For a commutative ring R, we exploit localization techniques and point-free topology to give an explicit realization of both the Zariski frame of R (the frame of radical ideals in R) and its Hochster dual frame, as lattices in the poset of localizing subcategories of the unbounded derived category D(R). This yields new conceptual proofs of the classical theorems of Hopkins-Neeman and Thomason. Next we revisit and simplify Balmer's theory of spectra and supports for tensor triangulated
doi:10.1090/tran/6773
fatcat:hhrvo6pzzvaxleuml3wx3mlwbi