An evaluation of automated homology modelling methods at low target template sequence similarity

J. A. R. Dalton, R. M. Jackson
2007 Bioinformatics  
Motivation: There are two main areas of difficulty in homology modelling that are particularly important when sequence identity between target and template falls below 50%: sequence alignment and loop building. These problems become magnified with automatic modelling processes, as there is no human input to correct mistakes. As such we have benchmarked several stand-alone strategies that could be implemented in a workflow for automated high-throughput homology modelling. These include three new
more » ... sequence-structure alignment programs: 3D-Coffee, Staccato and SAlign, plus five homology modelling programs and their respective loop building methods: Builder, Nest, Modeller, SegMod/ENCAD and Swiss-Model. The SABmark database provided 123 targets with at least five templates from the same SCOP family and sequence identities 50%. Results: When using Modeller as the common modelling program, 3D-Coffee outperforms Staccato and SAlign using both multiple templates and the best single template, and across the sequence identity range 20-50%. The mean model RMSD generated from 3D-Coffee using multiple templates is 15 and 28% (or using single templates, 3 and 13%) better than those generated by Staccato and Salign, respectively. 3D-Coffee gives equivalent modelling accuracy from multiple and single templates, but Staccato and SAlign are more successful with single templates, their quality deteriorating as additional lower sequence identity templates are added. Evaluating the different homology modelling programs, on average Modeller performs marginally better in overall modelling than the others tested. However, on average Nest produces the best loops with an 8% improvement by mean RMSD compared to the loops generated by Builder. Contact:
doi:10.1093/bioinformatics/btm262 pmid:17510171 fatcat:ogwxuwety5c6dcmam6k4bnnt3y