A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Graph based anomaly detection in human action video sequence
2022
Journal of Electrical Engineering
In our paper, we have proposed to use graphs to detect anomaly in human action video. Although the detection of anomaly is a widely researched topic, but very few researchers have detected anomaly in action video using graphs. in our proposed method we have represented the smaller section (sub-section) of our input video as a graph where vertices of the graph are the space time interest points in the sub-section video and the association between the space time interest points exists. Thus,
doi:10.2478/jee-2022-0042
fatcat:dg4fxacotvagdc3xgutrcau6sq