Inverse Ising Inference Using All the Data

Erik Aurell, Magnus Ekeberg
2012 Physical Review Letters  
We show that a method based on logistic regression, using all the data, solves the inverse Ising problem far better than mean-field calculations relying only on sample pairwise correlation functions, while still computationally feasible for hundreds of nodes. The largest improvement in reconstruction occurs for strong interactions. Using two examples, a diluted Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that interaction topologies can be recovered from few samples
more » ... with good accuracy and that the use of l_1-regularization is beneficial in this process, pushing inference abilities further into low-temperature regimes.
doi:10.1103/physrevlett.108.090201 pmid:22463617 fatcat:2yhr6v5dufbc5agp5k2nf3uyya