Color-coding

Noga Alon, Raphael Yuster, Uri Zwick
1995 Journal of the ACM  
We describe a novel randomized method, the method of color-coding for finding simple paths and cycles of a specified length k, and other small subgraphs, within a given graph G = (V, E). The randomized algorithms obtained using this method can be derandomized using families of perfect hash functions. Using the color-coding method we obtain, in particular, the following new results: • For every fixed k, if a graph G = (V, E) contains a simple cycle of size exactly k, then such a cycle can be
more » ... d in either 376 is the exponent of matrix multiplication. (Here and in what follows we use V and E instead of |V | and |E| whenever no confusion may arise.) • For every fixed k, if a planar graph G = (V, E) contains a simple cycle of size exactly k, then such a cycle can be found in either O(V ) expected time or O(V log V ) worst-case time. The same algorithm applies, in fact, not only to planar graphs, but to any minor closed family of graphs which is not the family of all graphs. • If a graph G = (V, E) contains a subgraph isomorphic to a bounded tree-width graph H = (V H , E H ) where |V H | = O(log V ), then such a copy of H can be found in polynomial time. This was not previously known even if H were just a path of length O(log V ). These results improve upon previous results of many authors. The third result resolves in the affirmative a conjecture of Papadimitriou and Yannakakis that the LOG PATH problem is in P. We can show that it is even in NC.
doi:10.1145/210332.210337 fatcat:xcxlixjrcbbrxkgn2lamsijyke