A Biohybrid Setup for Coupling Biological and Neuromorphic Neural Networks

Hanna Keren, Johannes Partzsch, Shimon Marom, Christian G. Mayr
2019 Frontiers in Neuroscience  
Developing technologies for coupling neural activity and artificial neural components, is key for advancing neural interfaces and neuroprosthetics. We present a biohybrid experimental setting, where the activity of a biological neural network is coupled to a biomimetic hardware network. The implementation of the hardware network (denoted NeuroSoC) exhibits complex dynamics with a multiplicity of time-scales, emulating 2880 neurons and 12.7 M synapses, designed on a VLSI chip. This network is
more » ... pled to a neural network in vitro, where the activities of both the biological and the hardware networks can be recorded, processed, and integrated bidirectionally in real-time. This experimental setup enables an adjustable and well-monitored coupling, while providing access to key functional features of neural networks. We demonstrate the feasibility to functionally couple the two networks and to implement control circuits to modify the biohybrid activity. Overall, we provide an experimental model for neuromorphic-neural interfaces, hopefully to advance the capability to interface with neural activity, and with its irregularities in pathology.
doi:10.3389/fnins.2019.00432 pmid:31133779 pmcid:PMC6517490 fatcat:klgtpn4gtjgh7imlan2xtkxwja