Exploiting Document Level Information to Improve Event Detection via Recurrent Neural Networks

Shaoyang Duan, Ruifang He, Wenli Zhao
2017 International Joint Conference on Natural Language Processing  
This paper tackles the task of event detection, which involves identifying and categorizing events. The previous work mainly exists two problems: (1) the traditional feature-based methods apply crosssentence information, yet need taking a large amount of human effort to design complicated feature sets and inference rules; (2) the representation-based methods though overcome the problem of manually extracting features, while just depend on local sentence representation. Considering local
more » ... context is insufficient to resolve ambiguities in identifying particular event types, therefore, we propose a novel document level Recurrent Neural Networks (DLRNN) model, which can automatically extract cross-sentence clues to improve sentence level event detection without designing complex reasoning rules. Experiment results show that our approach outperforms other state-ofthe-art methods on ACE 2005 dataset neither the external knowledge base nor the event arguments are used explicitly.
dblp:conf/ijcnlp/DuanHZ17 fatcat:tz2o4id7pja5zcksqj2muncjei