Activation of the JNK/MAPK Signaling Pathway by TGF-β1 Enhances Neonatal Fc Receptor Expression and IgG Transcytosis

Shaoju Qian, Chenxi Li, Xi Liu, Xiangchao Jia, Yuncai Xiao, Zili Li
2021 Microorganisms  
The neonatal Fc receptor (FcRn) transports maternal immunoglobulin G (IgG) to the foetus or newborn and protects the IgG from degradation. FcRn is expressed in several porcine tissues and cell types and its expression levels are regulated by immune and inflammatory events. IPEC-J2 cells are porcine intestinal columnar epithelial cells that were isolated from neonatal piglet mid-jejunum. We hypothesized that transforming growth factor β1 (TGF-β1) upregulated pFcRn expression in IPEC-J2 cells. To
more » ... test this hypothesis, we treated IPEC-J2 cells with TGF-β1 and demonstrated that porcine FcRn (pFcRn) expression was significantly increased. SP600125, a specific mitogen-activated protein kinase (MAPK) inhibitor, reduced TGF-β1-induced pFcRn expression in IPEC-J2 cells. We performed luciferase reporter assays and showed that the c-JUN sensitive region of the pFcRn promoter gene was located between positions −1215 and −140. The c-JUN sequence, in combination with the pFcRn promoter, regulated luciferase reporter activity in response to TGF-β1 stimulation. Chromatin immunoprecipitation confirmed that there were three c-JUN binding sites in the pFcRn promoter. Furthermore, in addition to increased pFcRn expression, TGF-β1 also enhanced IgG transcytosis in IPEC-J2 cells. In summary, our data showed that the modulation of JNK/MAPK signaling by TGF-β1 was sufficient to upregulate pFcRn expression.
doi:10.3390/microorganisms9040879 pmid:33923917 fatcat:i5fotekf4jempk5vysm6dwi5xa