Calcium and neurulation in mammalian embryos

M J Smedley, M Stanisstreet
1985 Journal of embryology and experimental morphology  
The role of calcium in neurulation in rat embryos has been studied. Rat embryos at 10 X 4 days of gestation, when the cephalic neural folds have elevated but not fused, have been cultured in various media, and the effects of these media on the morphology of the cephalic neural folds have been observed by scanning and transmission electron microscopy. Embryos cultured in serum containing EDTA or EGTA, or in saline without divalent cations exhibit opening, then folding back ('collapse') of the
more » ... ollapse') of the cephalic neural folds. The neural cells lose their elongated shape and become rounded. Older embryos in which the cephalic neural folds have already fused do not show collapse of the neural tube. Culture of 10 X 4-day rat embryos with elevated but unfused cephalic neural folds in calcium- and magnesium-free saline to which either calcium or magnesium has been restored shows that calcium is the divalent cation which is essential for the maintenance of the elevated neural folds. In the presence of calcium, lanthanum, which competes for calcium sites, causes opening but not collapse of the elevated cephalic neural folds. Embryos treated with trypsin show dissociation of the lateral (non-neural) ectoderm but the neural folds remain elevated. If embryos in which the cephalic neural folds have been caused to collapse are further cultured in serum the folds re-elevate, although normal neural tube morphology is not completely regained. The possible implications of these observations to the understanding of the cellular mechanisms of normal neurulation, and of neural tube malformations are discussed.
pmid:3937881 fatcat:zu4z2imi3fabtf56ccjqkg6hua