Modeling vocal fold motion with a hydrodynamic semicontinuum model

M. Drew LaMar, Yingyong Qi, Jack Xin
2003 Journal of the Acoustical Society of America  
Vocal fold (VF) motion is a fundamental process in voice production, and is also a challenging problem for direct numerical computation because the VF dynamics depend on nonlinear coupling of air flow with the response of elastic channels (VF), which undergo opening and closing, and induce internal flow separation. A traditional modeling approach makes use of steady flow approximation or Bernoulli's law which is known to be invalid during VF opening. We present a new hydrodynamic semi-continuum
more » ... system for VF motion. The airflow is modeled by a quasi-one dimensional continuum aerodynamic system, and the VF by a classical lumped two mass system. The reduced flow system contains the Bernoulli's law as a special case, and is derivable from the two dimensional compressible Navier-Stokes equations. Since we do not make steady flow approximation, we are able to capture transients and rapid changes of solutions, e.g. the double pressure peaks at opening and closing stages of VF motion consistent with experimental data. We demonstrate numerically that our system is robust, and models in-vivo VF oscillation more physically. It is also much simpler than a full two-dimensional Navier-Stokes system.
doi:10.1121/1.1577547 pmid:12880056 fatcat:665omg6mfzavlaj2q5f67j5lmq