Uniform stabilization of a coupled structural acoustic system by boundary dissipation

Mehmet Camurdan
1998 Abstract and Applied Analysis  
We consider a coupled PDE system arising in noise reduction problems. In a two dimensional chamber, the acoustic pressure (unwanted noise) is represented by a hyperbolic wave equation. The floor of the chamber is subject to the action of piezo-ceramic patches (smart materials). The goal is to reduce the acoustic pressure by means of the vibrations of the floor which is modelled by a hyperbolic Kirchoff equation. These two hyperbolic equations are coupled by appropriate trace operators. This
more » ... operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing) boundary dissipation.
doi:10.1155/s108533759800061x fatcat:qwmg5iqworf5vmg2kalkwjlvcu