Effect of Surface Hardness and Hydrogen Sulfide Partial Pressure on Sulfide Stress Cracking Behavior in Low Alloy Linepipe Steel

Junji Shimamura, Daichi Izumi, Itaru Samusawa, Satoshi Igi
2021 Tetsu to hagane  
TMCP (thermo-mechanical controlled process) linepipes have been long used for severe sour environment, but recently sulfide stress cracking (SSC) caused by local hard zones has become a concern. In order to clarify the hardness threshold that leads to SSC, four-point bend (4PB) SSC tests as per NACE TM0316 were conducted under several H 2 S partial pressure conditions. For 1 bar and higher H 2 S partial pressure conditions, the surface hardness threshold (at 0.25 mm from surface) observing 4PB
more » ... SC specimens without SSC cracking was approximately correlated to a maximum acceptable hardness level of 250 HV0.1. By suppressing the hard lath bainite (LB) and obtaining the soft granular bainite (GB) microstructure, stable low surface hardness of 250 or less HV0.1 was achieved, resulting in superior SSC-resistant property. On the other hand, it was found that SSC crack propagated when the surface hardness increased with increasing the volume fraction of LB microstructure. In the case of 16 bar H 2 S partial pressure condition, the crack growth rate increased in the sour environment, and hydrogen embrittlement by H 2 S was promoted. However, in the 4PB SSC test at 16 bar, since the shape of localized corrosion is semicircular due to low localized corrosivity, it was considered that the stress concentration and transition to crack were suppressed. This may be the reason why the SSC susceptibility was similar to 1 bar condition, especially in the 4PB SSC test using the samples with lower surface hardness level of 250 or less HV0.1.
doi:10.2355/tetsutohagane.tetsu-2020-121 fatcat:3gwmaijwvjge5kc5lmfih32iua