A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
An Efficient Fingertip Photoplethysmographic Signal Artifact Detection Method: A Machine Learning Approach
2021
Journal of Sensors
A photoplethysmography method has recently been widely used to noninvasively measure blood volume changes during a cardiac cycle. Photoplethysmogram (PPG) signals are sensitive to artifacts that negatively impact the accuracy of many important measurements. In this paper, we propose an efficient system for detecting PPG signal artifacts acquired from a fingertip in the public healthcare database named Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) by using 11 features as the
doi:10.1155/2021/9925033
fatcat:h5gpcvmufbbmphsmqqrnf6chya