A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit <a rel="external noopener" href="https://core.ac.uk/download/pdf/82005611.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
A note on packing trees into complete bipartite graphs and on fishburn's conjecture
<span title="">1990</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a>
</i>
In this note we improve significantly the result appeared in [4] by showing that any sequence of trees { T2, 'I;, . , T,} can be packed into the complete bipartite graph K,_"n,z (n even) for f = 0.3n. Furthermore we support Fishburn's Conjecture [2] by showing that any sequence {T" T4, 0012-365X/90/$3.50 0 1990, Elsevier Science Publishers B.V. (North-Holland)
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0012-365x(90)90209-z">doi:10.1016/0012-365x(90)90209-z</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/o33wvmxlkja2tkwyjq2gi7n6ni">fatcat:o33wvmxlkja2tkwyjq2gi7n6ni</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190326040248/https://core.ac.uk/download/pdf/82005611.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/7a/a0/7aa073ca6a9d6a99c1740f21e1a44ceb46f2f448.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0012-365x(90)90209-z">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
elsevier.com
</button>
</a>