A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks
[article]
2021
arXiv
pre-print
We propose a nonlinear reduced basis method for the efficient approximation of parametrized partial differential equations (PDEs), exploiting kernel proper orthogonal decomposition (KPOD) for the generation of a reduced-order space and neural networks for the evaluation of the reduced-order approximation. In particular, we use KPOD in place of the more classical POD, on a set of high-fidelity solutions of the problem at hand to extract a reduced basis. This method provides a more accurate
arXiv:2103.17152v1
fatcat:vabtvcls3naancufd7vlqgchru