Isolation, Identification, Optimization of Baker's Yeast from Natural Sources, Scale-Up Production Using Molasses as a Cheap Carbohydrate Source, and Evaluation for Bread Production

A. N. M. Mamun-Or-Rashid, Tanzima Tarannum Lucy, Md. Kamruzzaman Pramanik
2022 Applied Microbiology  
(1) Background: Bangladesh must has to spend a large amount of foreign currency to import commercial baker's yeast every year. We could save money by finding a potential Saccharomyces cerevisiae from natural sources compatible with commercial baker's yeast production. (2) Methods: Grapes, rice, pineapples were collected, processed, and inoculated on YMA plates and incubated at 30 °C for 48 h. Then 11 single morphologically well-formed colonies were isolated, purified, and identified, three as
more » ... cerevisiae, three as S. rouxii, three as S. bisporus, and two as S. exigus based on standard cultural, morphological, and biochemical characteristics. Identified S. cerevisiae (designated as G2, P5 and R3) were then assessed for CO2 production as a measure of their baking potential during bread production and compared with two commercial strains (designated as C1 and C2). (3) Results: Isolate-G2 produced the maximum of 1830 mm3 of gas, whereas C1, C2, R3, and P5 produced 1520, 1680, 770, and 610 mm3 gas, respectively. No strain produced H2S which is associated with an off-flavor and unpleasant taste. These isolates showed maximum cell density at a pH range of 4–5.5 in 4–16% molasses broth at 30 °C after 4 days of incubation and maximum 4.75 × 109, 7.9 × 108, 1.472 × 1010, 2.08 × 1010 and 5.24 × 109 CFU mL−1 were produced by C1, C2, G2, P5 and R3, respectively. Isolate-G2 was found to have the most potential, whereas isolate-R3 and P5 have satisfactory potential. (4) Conclusions: G2 could be a good candidate for commercial trials.
doi:10.3390/applmicrobiol2030040 fatcat:jmrbzkudknespkxy4sq3kdtcru