A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Join Classifier of Type and Index Mutation on Lung Cancer DNA using Sequential Labeling Model
2022
IEEE Access
The sequential labeling model is commonly used for time series or sequence data where each instance label is classified using previous instance label. In this work, a sequential labeling model is proposed as a new approach to detect the type and index mutations simultaneously, using DNA sequences from lung cancer study cases. The methods used are One Dimensional Convolutional Neural Network (1D-CNN), Bidirectional Long Short-Term Memory (BiLSTM), and Bidirectional Gated Recurrent Unit (Bi-GRU).
doi:10.1109/access.2022.3142925
fatcat:yo7zdi6pincj5b7oxts5mirwyq