Cabbage cultivars influence transfer and toxicity of cadmium in soil-Chinese flowering cabbage Brassica campestris-cutworm Spodoptera litura larvae

Jin Chen, Pan Jin, Shimin Huang, Yeshan Guo, Fengxiao Tan, Jianwu Wang, Yinghua Shu
2021 Ecotoxicology and Environmental Safety  
We executed a pot experiment to examine the differences of absorption, chemical forms, subcellular distribution, and toxicity of Cd between two cultivars of Chinese flowering cabbage Brassica campestris [Lvbao701 (low-Cd cultivar) and Chicaixin No.4 (high-Cd cultivar)]. Compared to Chicaixin No.4, the presence of Lvbao701 enhanced the proportion of insoluble Cd forms in soil, Lvbao701 roots and leaves had higher proportion of Cd converted into insoluble phosphate precipitates and pectate-or
more » ... and pectate-or protein-bound forms and lower proportion of inorganic Cd, which result in low accumulation and toxicity of Cd to Lvbao701 and cutworm Spodoptera litura fed on Lvbao701 leaves. Instead of total Cd, Cd transfer and toxicity in B. campestris-S. litura system depend on chemical Cd forms in soil and cabbages and subcellular Cd distributions in cabbages and insects, and the proportions of them were not the highest among all chemical forms and subcellular distributions of Cd. Although exchangeable Cd was major Cd chemical form in cabbage planted soil, Cd bound to iron and manganese oxides and to organic matter were significantly correlated with growth indices and photosynthesis parameters of cabbages. Despite major part of Cd was precipitated in cell wall of roots, Cd in organelle fraction was closely associated with the fitness of cabbages. Metal-rich granules, not cytosolic fraction (the major subcellular Cd distribution), affected the food utilization of S. litura. Therefore, cabbage cultivars significantly affected Cd transfer and toxicity in B. campestris-S. litura system, and the use of Lvbao701 in Cd polluted soil could reduce potential risks for Cd entering food chains.
doi:10.1016/j.ecoenv.2021.112076 pmid:33639562 fatcat:grytnk32abei5czs3pa2e3tnqe