A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Universal 3-dimensional visibility representations for graphs
1998
Computational geometry
This paper studies 3-dimensional visibility representations of graphs in which objects in 3-d correspond to vertices and vertical visibilities between these objects correspond to edges. We ask which classes of simple objects are universal, i.e. powerful enough to represent all graphs. In particular, we show that there is no constant k for which the class of all polygons having k or fewer sides is universal. However, we show by construction that every graph on n vertices can be represented by
doi:10.1016/s0925-7721(97)00015-1
fatcat:fed4nmehsffynnlr246cyyg53u