Dual in-aquifer and near surface processes drive arsenic mobilization in Cambodian groundwaters

Laura A. Richards, Daniel Magnone, Jürgen Sültenfuß, Lee Chambers, Charlotte Bryant, Adrian J. Boyce, Bart E. van Dongen, Christopher J. Ballentine, Chansopheaktra Sovann, Sebastian Uhlemann, Oliver Kuras, Daren C. Gooddy (+1 others)
2019 Science of the Total Environment  
Editor: Filip M.G. Tack Millions of people globally, and particularly in South and Southeast Asia, face chronic exposure to arsenic from reducing groundwater in which arsenic release is widely attributed to the reductive dissolution of arsenic-bearing iron minerals, driven by metal reducing bacteria using bioavailable organic matter as an electron donor. However, the nature of the organic matter implicated in arsenic mobilization, and the location within the subsurface where these processes
more » ... these processes occur, remains debated. In a high resolution study of a largely pristine, shallow aquifer in Kandal Province, Cambodia, we have used a complementary suite of geochemical tracers (including 14 C, 3 H, 3 He, 4 He, Ne, δ 18 O, δD, CFCs and SF 6 ) to study the evolution in arsenic-prone shallow reducing groundwaters along dominant flow paths. The observation of widespread apparent 3 H-3 He ages of b55 years fundamentally challenges some previous models which concluded that groundwater residence times were on the order of hundreds j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / s c i t o t e n v of years. Surface-derived organic matter is transported to depths of N30 m, and the relationships between agerelated tracers and arsenic suggest that this surface-derived organic matter is likely to contribute to in-aquifer arsenic mobilization. A strong relationship between 3 H-3 He age and depth suggests the dominance of a vertical hydrological control with an overall vertical flow velocity of~0.4 ± 0.1 m·yr −1 across the field area. A calculated overall groundwater arsenic accumulation rate of~0.08 ± 0.03 μM·yr −1 is broadly comparable to previous estimates from other researchers for similar reducing aquifers in Bangladesh. Although apparent arsenic groundwater accumulation rates varied significantly with site (e.g. between sand versus clay dominated sequences), rates are generally highest near the surface, perhaps reflecting the proximity to the redox cline and/or depthdependent characteristics of the OM pool, and confounded by localized processes such as continued in-aquifer mobilization, sorption/desorption, and methanogenesis.
doi:10.1016/j.scitotenv.2018.12.437 fatcat:pltk6k2nkvbxzlgqdutt2auyda