Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward

O. Hikosaka, M. Sakamoto, S. Usui
1989 Journal of Neurophysiology  
SUMMARYANDCONCLUSIONS 1. The present paper reports complex neural activities in the monkey caudate nucleus that precede and anticipate visual stimuli and reward in learned visuomotor paradigms. These activities were revealed typically in the delayed saccade task in which memory and anticipation were required. We classified these activities according to their relationships to the task. 2. Activity related to expectation of a cue (yt = 46) preceded the presentation of a spot of light (target cue)
more » ... light (target cue) that signified the future location of saccade target. When the target cue was delayed, the activity was prolonged accordingly. The same spot of light was preceded by no activity if it acted as a distracting stimulus. 3. The sustained activity (n = 80) was a tonic discharge starting after the target cue as if holding the spatial information. 4. The activity related to expectation of target (n = 109) preceded the appearance of the target whose location was cued previously. It started with or after a saccade to the cued target location and ended with the appearance of the target. The activity was greater when the target was expected to appear in the contralateral visual field. 5. The activity related to expectation of reward (n = 57) preceded a task-specific reward. It started with the appearance of the final target and ended with the reward. In most cases, the activity was nonselective for how the monkey obtained the reward, i.e., by visual fixation only, by a saccade, or by a hand movement. The activity was dependent partly on visual fixation. 6. A few neurons showed tonic activity selectively before lever release and are thus considered to be related to the preparation of hand movements. 7. The activity related to breaking fixation (n = 33) occurred phasically if the monkey broke fixation, aborting the trial. 8. Activity related to reward (n = 104) was a phasic discharge that occurred before or after a reward of water was delivered. The activity was not simply related to a specific movement involved in the reward-obtaining behavior (eye, hand, or mouth movement). 9. Fixation-related activity (n = 72) was tonic activity continuing as long as the monkey attentively fixated a spot of light. It was dependent on reward expectancy in most cases. IO. The present results, together with those in the preceding papers, indicate that the activities of individual caudate neurons -sensory, motor, or cognitive-are dependent on specific contexts of learned behavior. We suggest that the caudate nucleus is part of the neural mechanism for predicting environmental changes and preparing for the next movement in carrying out sequential behaviors.
doi:10.1152/jn.1989.61.4.814 pmid:2723722 fatcat:bg67zyigojapvmgyxnkmuk5jo4