Active Profiling and Polishing Model and Validation Based on Rotor Spiral Groove

Guo Yu, Feng Li, Yong-Min Yu, Shou-Xiang Zai
2018 Chinese Journal of Mechanical Engineering  
When a spiral groove is formed using superplastic molding, precision casting, additive manufacturing, or other nonmechanical processing technology, it is difficult to meet the molding precision required for direct use, and the surface quality and accuracy of the shape need to be improved through a finishing process. In view of the poor reachability of the current tool-based polishing process, a tool-less polishing method using free-abrasive grains for complex spiral grooves is proposed. With
more » ... s method, by controlling the movement of the workpiece, the design basis and relative motion of the abrasive particles along a helical path remain consistent, resulting in a better polishing profile. A spiral groove of a revolving body is taken as the research object; the influence of the installation method and the position of the parts, as well as the effect of the rotational speed of the abrasive ball on its relative motion along a helical trajectory, are studied, and the polishing cutting process of an abrasive ball is reasonably simplified. A consistent mathematical model of the trajectory of an abrasive ball relative to the design helix is constructed. The grooved drum parts are verified through a polishing experiment. The spiral groove of the revolving body is modified and polished. Experiments show that the process not only corrects the shape a spiral groove error, but also reduces the surface roughness of a spiral groove. This study provides a theoretical basis for achieving free-abrasive, tool-free polishing. which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
doi:10.1186/s10033-018-0225-6 fatcat:yhwb6lrxzrgmtpfeifnwsutizq