Detection and Characterisation of Compounds Inhibiting Stress Granule Formation in Cancer Cells
Kimberley Estelle Christen, University, My, Hendrick Kennedy
2019
Cancer is one of the leading causes of death worldwide and despite significant improvements to treatment and prevention, cancer cases remain on the rise. Chemotherapy is used to treat patients with cancer, however these do not only kill the cancer cells but also kill normal, healthy cells in the patient. Furthermore, cancer cells have the capacity to become resistant to chemotherapeutic treatment. Therefore, new treatments need to be developed to overcome this problem. One avenue that is being
more »
... esearched is the use of natural products as chemotherapeutic drugs. Over 60% of anticancer drugs used today are either natural products, or their synthetic derivatives and new research is being performed to screen plant and animal secondary metabolites to discover new compounds with anti-cancer therapeutic potential. The research reported in this thesis uses two compounds purified from natural products to explore a novel approach for cancer treatment. Stress granules (SGs) are messenger ribonucleoprotein particles that are produced in the cytoplasm of the cell in response to stress. Stress granules have been linked to the inhibition of apoptosis and development of multiple drug resistance and it has been suggested that cancer cells can hijack stress granules and use their biological activities to enhance cancer cell survival. In a study by Fournier et al the inhibition of stress granules in bortezomib resistant cancer cells allowed these cells to become sensitive to bortezomib treatment and resulted in an increase in cell death from 15% to 75% (Fournier et al., 2010). This suggests that the inhibition of stress granule formation may restore chemo-sensitivity to the cancer cells, however, the full effect has not been explored beyond the cell based experiments described by Fournier et al. This research project was based on the research by Fournier et al, suggesting that SG inhibition can increase the efficacy of bortezomib. The aims of this project were to discover natural products that inhibited SG formation and use these n [...]
doi:10.25904/1912/3504
fatcat:pvrmof6arbccxakipgkl327jt4