Empirical Bayes estimation of semi-parametric hierarchical mixture models for unbiased characterization of polygenic disease architectures [article]

jo nishino, Yuta Kochi, Daichi Shigemizu, Mamoru Kato, Katsunori Ikari, Hidenori Ochi, Hisashi Noma, Kota Matsui, Takashi Morizono, Keith A Anthony Boroevich, Tatsuhiko Tsunoda, Shigeyuki Matsui
2016 bioRxiv   pre-print
Genome-wide association studies (GWAS) suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbiased estimation of the underlying proportion of disease-associated variants and their effect-size distribution. Applying empirical Bayes estimation of semi-parametric hierarchical mixture models to
more » ... ixture models to GWAS summary statistics, we confirmed that schizophrenia was extremely polygenic (~40% risk variants of independent genome-wide SNPs, most within odds ratio (OR)=1.03), whereas rheumatoid arthritis was less polygenic (~4 to 8% risk variants, significant portion reaching OR=1.05 to 1.1). For rheumatoid arthritis, stratified estimations revealed that expression quantitative loci in blood explained large genetic variance, and low- and high-frequency derived alleles were prone to be risk and protective, respectively, suggesting a predominance of deleterious-risk and advantageous-protective mutation. Despite genetic correlation, effect-size distributions for schizophrenia and bipolar disorder differed across allele frequency. These analyses distinguished disease polygenic architectures and provided clues for etiological differences in complex diseases.
doi:10.1101/080945 fatcat:4ijumag4afd65ptgdkmz6i4ta4