Solutions to the Classical Liouville Equation [article]

Jose A. Magpantay, Cilicia Uzziel M. Perez
2014 arXiv   pre-print
We present solutions to the classical Liouville equation for ergodic and completely integrable systems - systems that are known to attain equilibrium. Ergodic systems are known to thermal equilibrate with a Maxwell-Boltzmann distribution and we show a simple derivation of this distribution that also leads to a derivation of the distribution at any time t. For illustrative purposes, we apply the method to the problem of a one-dimensional gravitational gas even though its ergodicity is debatable.
more » ... For completely integrable systems, the Liouville equation in the original phase space is rather involved because of the group structure of the integral invariants, which hints of a gauge symmetry. We use Dirac's constrained formalism to show the change in the Liouville equation, which necessitates the introduction of gauge-fixing conditions. We then show that the solution of the Liouville equation is independent of the choice of gauge, which it must be because physical quantities are derived from the distribution. Instead, we derive the solution to the classical Liouville equation in the phase space where the dynamics involve ignorable coordinates, a technique that is akin to the use of the unitarity gauge in spontaneously broken gauge theories to expose the physical degrees of freedom. It turns out the distribution is time-independent and precisely given by the generalized Gibbs ensemble (GGE), which was solved by Jaynes using the method of constrained optimization. As an example, we apply the method to the problem of two particles in 3D interacting via a central potential.
arXiv:1311.4594v2 fatcat:oqihmjgbpbb5pds2yxf24btyja