GUDIE: a flexible, user-defined method to extract subgraphs of interest from large graphs [article]

Maria Inês Silva, David Aparício, Beatriz Malveiro, João Tiago Ascensão, Pedro Bizarro
<span title="2021-08-20">2021</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Large, dense, small-world networks often emerge from social phenomena, including financial networks, social media, or epidemiology. As networks grow in importance, it is often necessary to partition them into meaningful units of analysis. In this work, we propose GUDIE, a message-passing algorithm that extracts relevant context around seed nodes based on user-defined criteria. We design GUDIE for rich, labeled graphs, and expansions consider node and edge attributes. Preliminary results
more &raquo; ... that GUDIE expands to insightful areas while avoiding unimportant connections. The resulting subgraphs contain the relevant context for a seed node and can accelerate and extend analysis capabilities in finance and other critical networks.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:2108.09200v1</a> <a target="_blank" rel="external noopener" href="">fatcat:5cqsfgbbxrh5jpdnwbxb46un3y</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>