HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes

D Zhu, D J Dix, E M Eddy
1997 Development  
Cyclin B-dependent CDC2 kinase activity has a key role in triggering the G2/M-phase transition during the mitotic and meiotic cell cycles. The Hsp70-2 gene is expressed only in spermatogenic cells at a significant level. In Hsp70-2 gene knock-out (Hsp70-2(-/-)) mice, primary spermatocytes fail to complete meiosis I, suggesting a link between HSP70-2 heat-shock protein and CDC2 kinase activity during this phase of spermatogenesis. Members of the HSP70 protein family are molecular chaperones that
more » ... lar chaperones that mediate protein de novo folding, translocation and multimer assembly. This study used immunoprecipitation-coupled western blot and in vitro reconstitution experiments to show that HSP70-2 interacts with CDC2 in the mouse testis, appears to be a molecular chaperone for CDC2, and is required for CDC2/cyclin B1 complex formation. Previous studies reported that most CDC2 kinase activity in the mouse testis is present in pachytene spermatocytes. Although CDC2 kinase activity for histone H1 was present in the testis of wild-type mice, it was nearly absent from the testis of Hsp70-2(-/-) mice, probably due to defective CDC2/cyclin B1 complex formation. Furthermore, addition of HSP70-2 to freshly prepared extracts of testis from Hsp70-2(-/-) mice not only restored CDC2/cyclin B1 complex formation but also reconstituted CDC2 kinase activity in vitro. It appears that one cause of failure to complete meiosis I during spermatogenesis in Hsp70-2(-/-) mice is disruption of CDC2/cyclin B1 assembly in pachytene spermatocytes, thereby preventing development of the CDC2 kinase activity required to trigger G2/M-phase transition. These studies provide novel in vivo evidence for a link between an HSP70 molecular chaperone and CDC2 kinase activity essential for the meiotic cell cycle in spermatogenesis.
pmid:9247342 fatcat:f6nq5afn6vcc3j2icydxwzdpfi