Autonomous, Onboard Vision-Based Trash and Litter Detection in Low Altitude Aerial Images Collected by an Unmanned Aerial Vehicle

Marek Kraft, Mateusz Piechocki, Bartosz Ptak, Krzysztof Walas
2021 Remote Sensing  
Public littering and discarded trash are, despite the effort being put to limit it, still a serious ecological, aesthetic, and social problem. The problematic waste is usually localised and picked up by designated personnel, which is a tiresome, time-consuming task. This paper proposes a low-cost solution enabling the localisation of trash and litter objects in low altitude imagery collected by an unmanned aerial vehicle (UAV) during an autonomous patrol mission. The objects of interest are
more » ... cted in the acquired images and put on the global map using a set of onboard sensors commonly found in typical UAV autopilots. The core object detection algorithm is based on deep, convolutional neural networks. Since the task is domain-specific, a dedicated dataset of images containing objects of interest was collected and annotated. The dataset is made publicly available, and its description is contained in the paper. The dataset was used to test a range of embedded devices enabling the deployment of deep neural networks for inference onboard the UAV. The results of measurements in terms of detection accuracy and processing speed are enclosed, and recommendations for the neural network model and hardware platform are given based on the obtained values. The complete system can be put together using inexpensive, off-the-shelf components, and perform autonomous localisation of discarded trash, relieving human personnel of this burdensome task, and enabling automated pickup planning.
doi:10.3390/rs13050965 doaj:84d38d75156643f0a0292ced69366edc fatcat:kzcr77k3ybbk3plsvpgvx6gkhe