Character Extraction and Character Type Identification from Summarised Story Plots

Vardhini Srinivasan, Aurelia Power
2022 Journal of Computer-Assisted Linguistic Research  
Identifying the characters from free-form text and understanding the roles and relationships between them is an evolving area of research. They have a wide range of applications, from summarising narrations to understanding the social network from social media tweets, which can help in automation and improve the experience of AI systems like chatbots and much more. The aim of this research is twofold. Firstly, we aim to develop an effective method of extracting characters from a story summary,
more » ... o develop a set of relevant features, then, using supervised learning algorithms, to identify the character types. Secondly, we aim to examine the efficacy of unsupervised learning algorithms in type identification, as it is challenging to find a dataset with a predetermined list of characters, roles, and relationships that are essential for supervised learning. To do so, we used summary plots of fictional stories to experiment and evaluate our approach. Our character extraction approach successfully improved on the performance reported by existing work, with an average F1-score of 0.86. Supervised learning algorithms successfully identified the character types and achieved an overall average F1-score of 0.94. However, the clustering algorithms identified more than three clusters, indicating that more research is needed to improve their efficacy.
doi:10.4995/jclr.2022.17835 fatcat:sudotqi7dvbcjjd33dtdfcklfa