Principles of discrete time mechanics: I. Particle systems
George Jaroszkiewicz, Keith Norton
1997
Journal of Physics A: Mathematical and General
We discuss the principles to be used in the construction of discrete time classical and quantum mechanics as applied to point particle systems. In the classical theory this includes the concept of virtual path and the construction of system functions from classical Lagrangians, Cadzow's variational principle applied to the action sum, Maeda-Noether and Logan invariants of the motion, elliptic and hyperbolic harmonic oscillator behaviour, gauge invariant electrodynamics and charge conservation,
more »
... nd the Grassmannian oscillator. First quantised discrete time mechanics is discussed via the concept of system amplitude, which permits the construction of all quantities of interest such as commutators and scattering amplitudes. We discuss stroboscopic quantum mechanics, or the construction of discrete time quantum theory from continuous time quantum theory and show how this works in detail for the free Newtonian particle. We conclude with an application of the Schwinger action principle to the important case of the quantised discrete time inhomogeneous oscillator.
doi:10.1088/0305-4470/30/9/022
fatcat:ichn3p7wwjfshat6p2u2y2cdyq