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A novel form for the exchange-correlation energy functional
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A new approximate form for the exchange-correlation energy functional is developed. The form is
based on the density matrix expansion~DME! for the exchange functional@R. M. Koehl, G. K.
Odom, and G. E. Scuseria, Mol. Phys.87, 835 ~1996!#. The nonlocal portion of the correlation
energy is assumed to have the same general form as that derived for exchange, while the local
portion is taken to be that of the uniform electron gas. The resulting formula does not resort to the
use of exact-exchange mixing. A Kohn-Sham implementation of this functional is constructed and
the parameters within the functional are adjusted to minimize the difference between the theoretical
and the experimental data for a large set of atomic and molecular systems. The results are found to
compare favorably with existing functionals, even those which include exact-exchange mixing.
© 1998 American Institute of Physics.@S0021-9606~98!00126-3#
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I. INTRODUCTION

The fundamental theorem of most modern applicatio
of density functional theory~DFT! is the theorem of Kohn
and Sham1–3 which states that the exact ground state ene
of any many-electronic system is given by

E0@r#5Ts@r#1J@r#1Ene@r#1Exc@r#, ~1!

whereTs@r# is the noninteracting kinetic energy

Ts@r#5E (
i

occ

u¹c i u2dr[E tdr , ~2!

J@r# is the classical Coulomb repulsion energy,Ene@r# is
the energy of the electrons in the external field of the nu
and Exc@r# is the exchange-correlation~XC! energy. The
wonderful thing about Eq.~1! is that the first three terms o
the right hand side of the equation are well-known a
readily calculable functionals of the electronic density. T
disheartening fact is that the analytic form of the XC fun
tional is not, and probably cannot ever be, known. The g
of this article is to develop better approximations to the ex
Exc@r#.

One useful approximation to the true XC functional
the so-called generalized-gradient approximation~GGA!.4–6

This approximation assumes that the exchange-correla
functional is given by:

Exc@r#5E f ~r,¹r!dr , ~3!

wheref is simply a function of the values of the density a
its gradient at the pointr . Functionals of this form have bee
shown to give very good results. Further, Neumann a
Handy have shown7 that simple methods of adding highe
order derivatives of the density to existing approximations
the general form of Eq.~3! do not seem to significantly im
prove the agreement with the exact results. This seem
4000021-9606/98/109(2)/400/11/$15.00
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indicate that the errors inherent in current functionals sho
be corrigible without appealing to higher than first deriv
tives of the density.

Becke has investigated various methods of using the
act, Hartree-Fock-style exchange energy to improve appr
mations to the true XC functional. Such forms are often
ferred to as ‘‘hybrid’’ functionals, and Becke has found8–10

that exact-exchange mixing can significantly improve the
sults obtained from GGA-style functionals. There are, ho
ever, drawbacks to using exact exchange. Most importan
the Hartree-Fock~HF! exchange energy is known to giv
qualitatively incorrect results for transition-metal complex
and other systems in which there are a number of low-ly
virtual orbitals whose interactions with the occupied orbit
are not treated. Density functionals do not seem to su
from this difficulty, since they compute the energy based
density and not orbital fluctuations.

In a pair of articles,11,12 we have investigated the utility
of a Taylor series-like density matrix expansion~DME!, first
introduced by Negele and Vautherin13 to approximate HF
exchange. The resulting functional has a GGA-like dep
dence onr and ¹r but also includes terms that depend
the noninteracting kinetic energy densityt. Since the Kohn-
Sham energy functional already depends ont through the
definition of Ts@r# in Eq. ~2!, such a term does not requir
any additional information about the electron distributio
but merely defines a more flexible form for the XC
functional. It was found12 that such a form gives very en
couraging results for the approximation of the exa
exchange energy.

In the present work, we investigate the possibility
applying the form that arises from the DME to approxima
the entirety of the XC-functional instead of the exchange p
alone. Because we have already seen that the DME poss
the ability to approximate the HF exchange-energy, one
cumvents the use of exact-exchange mixing. Nonethel
the accuracy of the resulting functional is shown to be co
petitive with established XC-functionals.
© 1998 American Institute of Physics





e
e
n

d
or
e

s

i-
sc
it

nt
to

ite

n
n

on
nd
o
w

si

ul

ly-
un
ity
r-
er
e

he
Eq
m
io
m

e
2

o

his

h is
ally,

ts

nd
ary
se
on
ion.

A
e
in

nd
he

e
to

d
the
d a

402 J. Chem. Phys., Vol. 109, No. 2, 8 July 1998 T. Van Voorhis and G. E. Scuseria
ing requirements. The only way for this to be true, howev
is for gl(x,z) to scale as the limiting value of the abov
sequence,l4/3. The simplest form that scales in this fashio
and satisfies the requirement that the Fermi momentum
recovered for uniform densities is

g~x,z!511a~x21z!. ~18!

This is the form that we have selected for the present stu
One might nominally expect that different coefficients f
thex2 andz terms would give an improved description of th
exchange energy, but we have found empirically that thi
not the case, and so we retain the form of Eq.~18! for sim-
plicity. One consequence of using thisg(x,z) is that for any
truncatedversion of the DME, one finds that the approx
mate exchange energy scales to zero under nonuniform
ing. Hence, while the true exchange as given by the infin
order DME using thisg(x,z) scales to a negative consta
under nonuniform scaling, the form of the DME seems
indicate that it is more appropriate to require that any fin
order approximate functional scale to zero in this limit.

It is very important to note that even though the expa
sion in Eq.~6! contains the correct second order coefficie
for j 3(ks)/ks it does not include all the terms that depend
x andz. This is because the exact expansion uses Lege
polynomials for the derivative operator. Even the highest
der polynomials from this family have terms that are lo
order in its argument, and hence every term in the expan
of Eq. ~6! will depend partly onx2 andz. If one were some-
how able to reexpress the~infinite! expansion simply in
terms of the powers of the differential operator, one wo
obtain an equation with the exact contributions ofx2 andz.
However, since the mathematical identity11,13 that allows us
to perform the DME applies exclusively to Legendre po
nomials and spherical Bessel functions, and the Bessel f
tions must be retained in order to obtain the LDA dens
matrix as in Eq.~6!, it is at the very least not a straightfo
ward task to do this transformation analytically. Howev
since all the higher order terms will look precisely like th
terms we have already obtained, the total effect of all hig
order terms is just to alter the coefficients of the terms in
~7!. To account for this effect, we insert adjustable para
eters in front of each term to obtain, after some simplificat
and absorbing any multiplicative constants into the para
eter set

Ex
GVT4@r#5E r4/3S a

g~x,z!
1

bx21cz

g2~x,z!

1
dx41ex2z1 f z2

g3~x,z!
D dr . ~19!

We will, for convenience, call this the GVT4 functional du
to the similarity to the GMVT functional defined in Ref. 1
except that the current form includes some of the effects
the squares of the second order terms~fourth order terms!.

We note that a very similar choice fork2 was made in
Ref. 12 in order to force the exchange energy densityUx(r ),
defined by
r,
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Ex@r#[E rUxdr , ~20!

to converge exponentially to zero for larger . The exchange
energy density for the DME withk modified by the factor of
Eq. ~18! also has an exponentially decaying behavior. T
differs from the known exact form15

lim
r→`

Ux
exact52

1

r
. ~21!

However, we note that for a functional of the form

Ex@r#5E r4/3g~x,z!dr ~22!

this condition is incompatiblewith the exact nonuniform
scaling requirements of Eqs.~13! and ~14!. Specifically, Eq.
~21! requires that for larger , or equivalently largex, the
enhancement functiong(x,z) take the asymptotic form

g~x,z!}x/ log~x! ~23!

which is easily seen to violate both Eqs.~13! and ~14!.
Hence, the best we can hope for from our general approac
an exchange energy density that goes to zero exponenti
which is achieved by the current form.

It is clear that, in principle, the ratios of the coefficien
d, e, and f are fixed by the values ofb and c, since this
fourth order term is proportional to the square of the seco
order term. However, we choose to allow these ratios to v
with the expectation that if the constraint that fixes the
ratios is physically significant, our parameter selecti
scheme should discover this independent of our derivat
Also, since we have inserted a parameter in front of the LD
term, our functional will not retain the correct result for th
uniform electron gas limit. However, it has been shown
our previous investigations11,12 that a small violation of this
limit drastically improves results for molecular systems, a
so we include it here. It is also instructive to present t
trivial generalization of Eq.~19! to open shells,

KGVT4@ra ,rb#5(
s

E rs
4/3S a

gs~x,z!
1

bxs
21czs

gs
2~x,z!

1
dxs

41exs
2zs1 f zs

2

gs
3~x,z!

D dr , ~24!

where

gs~x,z![11a~xs
21zs! ~25!

andxs andzs are the same asx andz, merely evaluated for
the a and b densities as opposed to the total density. W
note that the GVT4 form above gives results comparable
the exchange functional of Ref. 12.

III. CONSTRUCTION OF THE
EXCHANGE-CORRELATION FORM

It has been shown11,12 that the DME forms discusse
above are sufficiently flexible to accurately describe
exact-exchange energy. One would, of course, like to fin
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way to confer this same flexibility and accuracy on a cor
lation functional. To this end, we note that the exchan
functional in Eq.~24! has the general form

Ex@ra ,rb#}(
s

E rsex,s
LDA f ~xs ,zs!dr , ~26!

if we choose

f ~xs ,zs!5S a

gs~x,z!
1

bxs
21czs

gs
2~x,z!

1
dxs

41exs
2zs1 f zs

2

gs
3~x,z!

D .

~27!

That is, our exchange functional can be expressed up t
overall numerical prefactor as the exchange energy for
uniform electron gas times a dimensionless, nonlocal fu
tion f (xs ,zs). Since this function is dimensionless, an
therefore independent of the energy scale of the problem,
expects that it should be, in some sense, transferable bet
different types of energy functional. The only difficulty i
our case lies in how this function may be incorporated int
correlation functional in a consistent, physical manner.

The correlation formalism we shall use to accompl
this is the one proposed by Becke.9 Becke defines same-spi
and opposite-spin correlation functionals,

Ec
ss85E f ss8~x,z!ecss8

LDA dr , ~28!

Ec
ss5E f ss~xs ,zs!Dsecss

LDAdr , ~29!

where

x2[xa
21xb

2, z[za1zb ~30!

and the same-spin and opposite spin LDA correlation p
are as defined by Stollet al.16 The factorDs is a dimension-
less factor given by

Ds512
xs

2

4~zs1CF!
. ~31!

Ds is easily seen to be zero for any system with only o
orbital. Since our same-spin correlation is multiplied by th
factor, this term guarantees that the correlation energy is
for any one-electron system, which is certainly a desira
trait for a correlation functional. With these definitions, o
constructs the correlation energy as

Ec5Ec
ab1Ec

aa1Ec
bb . ~32!

Our approach is to simply utilize the same functionf (x,z) as
was used to describe exchange and insert it into each o
correlation forms above, where we use the recent param
ization of Perdew and Wang for the local correlation form17

This choice is not in any way motivated by physical co
cerns, but should rather be considered a convenient app
mation. The bulk of the difference between the exchange
correlation energies should be accounted for by the pres
of the uniform electron gas functional multiplying each
the dimensionlessf (x,z)’s. We attempt to account for an
further differences by allowing the parameters in each of
three terms~exchange, same-spin and opposite-spin corr
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tion! to vary independently. Since we know this form is fle
ible enough to describe exchange, one hopes that it will a
be sufficiently flexible to describe correlation phenome
Hence we define our exchange-correlation form to be
exchange functional of Eq.~24! together with the correlation
form Eq. ~32! with the dimensionless nonlocal factor of E
~27!. This functional form will be referred to as the VSXC
form.

Now, this functional form has the drawback that th
number of parameters is quite large. Handy a
collaborators18 have shown recently that a large number
parameters does not necessarily guarantee proportion
better results, but that it is more important that the terms t
are included via the parametrization arephysically signifi-
cant. The primary hurdle that having so many paramet
invokes is that it becomes necessary to fit them over a v
large number of systems in order to be certain that the res
thus obtained are not simply due to the numerical fit, and
ensure that the resulting parameters are robust. Howe
noting that there are essentially an infinite number of syste
this functional may be applied to, one can increase the fitt
set without bound until the number of parameters cease
be a concern.

We also note here that our definition ofDs is slightly
different from that given by Becke.9,19 We have modified his
definition so thatDs is pseudo-zeroth order in the derivative
of the density. This is significant because our DME expa
sion is essentially a Taylor expansion, and should there
begin with a term that is of order zero in the differential.

IV. COMPUTATIONAL METHOD

The first thing that must be done in order to determ
the quality of the VSXC form is to obtain the optimal value
of the parameters in the functional. For this purpose, we h
constructed an extensive set of experimental values aga
which the results obtained by the VSXC functional will b
compared. Our set includes the G2 set of molecules20 and
also a large number of other species as described in the
pendix. All the fitting calculations are performed at the e
perimental geometries using a 6-3111G~3df,2p! basis. Fur-
ther details on how the calculations were done are a
discussed in the Appendix.

Now, several authors have proposed the use of cer
standard atomic and molecular densities as the tes
grounds for novel functionals.8–10,21–23This has the obvious
advantage of being significantly faster than a full Koh
Sham treatment, but the major drawback is that an excel
functional at any given fixed density does not necessa
translate into an excellent functional in a Kohn-Sha
scheme. Further, it is not altogether clear that a fixed den
should be appropriate for the comparison of two XC fun
tionals, since density relaxation, which would be accoun
for in a KS treatment, may be an important phenomenon
any given chemical system. For these reasons, we have
cided to use only fully self-consistent Kohn-Sham densit
for our comparisons.

Since our functional depends on the kinetic energy d
sity, t, a traditional KS scheme employing the function
derivative of the energy with respect to the density to obt
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VSXC satisfies the Lieb-Oxford bound for exchange.6,28 The
Lieb-Oxford bound requires that the exact LDA-exchan
enhancement factor, in our casef (x,z), should satisfy

f ~x,z!.22.12 ~34!

for all possible values ofx and z. Since our enhancemen
factor is a function of two variables, it is not easily display
for examination, nor is the equation for the minimum val
easily solved analytically. However, it is possible to ver
that the minimum value of our exchange enhancement fa
is attained whenx;26 andz;40, where the enhanceme
factor is about21.88. The enhancement factor for the who
of LDA XC should also satisfy this bound, but it would b
extremely difficult to examine the behavior of the total X
enhancement factor, since there are different enhancem
factors for each piece, and such an analysis would there
require evaluation of the relative magnitudes of the vario
terms. Hence we refrain from this in the present paper. H
ever, it is very encouraging that the exchange part, wh
makes up the majority of the XC energy, satisfies this imp
tant bound.

The results obtained with the optimal parameters o
the training set are listed in Tables II–V together with t
results with the standard functionals BLYP,21,22 B3LYP,8

and B1B95.9 The lattermost of these was specifically impl
mented for this work following Ref. 24. In Table VI, we lis
the overall statistics for each method. The results prese
in these tables must be taken with a grain of salt, since
functional has beenoptimizedto give the best possible re
sults over this set. With thiscaveat, we note that the result
given by the rather naive VSXC form are very encouragi
They compare favorably to the results of the establis
functionals, even B1B95 and B3LYP, which include exa
exchange mixing. In fact, the standard deviation of 6.2mEh

over the entire set for VSXC is actually lower than that o
tained by any of the other functionals. The average abso
errors for B1B95 and VSXC are essentially the same,
mEh compared to 4.7, and both are significantly better th
B3LYP, with an average absolute error of 6.3mEh . A com-
parison of the results of our functional to those of B1B95 a
B3LYP over this set is probably fair in spite of the fact th
our functional was optimized over this set, since the la
two were, themselves, fitted to a set which included ab
70% of the molecules in our full set. As far as functiona
that do not employ exact-exchange mixing go, we see
VSXC offers a very significant improvement over the BLY
functional, giving errors that are generally less than half
large as those for the established form.

It is important to note that certain molecules in the tra
ing set are described poorly by all of the XC functiona
examined herein. Most notably, the atomization energy of2

is significantly underestimated by all the functionals. This
understandable, since the proper description of the gro
state of C2 is known to involve a significant amount of non
dynamical correlation,29 a phenomenon which is very diffi
cult to account for in density functional theory.30 We think
that the identification of molecules such as this are crucia
the systematic improvement of existing density functiona
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TABLE II. Energy Differences~kcal/mol! from experimental atomization
energies (De) for the G2 set~ZPVE corrected!.

Molecule Expt. BLYP B3LYP B1B95 VSXC

LiH 257.7 20.1 20.6 3.6 2.6
BeH 249.6 27.4 28.2 24.4 0.1
CH 283.7 21.8 21.6 1.4 0.3
CH2

3B1 2189.8 20.0 22.1 0.0 21.8
CH2

1A1 2180.5 0.5 20.2 3.5 0.9
CH3 2306.4 20.5 23.3 0.6 23.6
CH4 2419.1 2.3 21.6 1.1 21.9
NH 283.4 26.0 24.5 0.2 0.5
NH2 2181.5 27.9 26.4 0.3 21.1
NH3 2297.3 23.6 22.9 2.5 1.9
OH 2106.3 23.3 21.8 0.4 20.9
H2O 2232.1 20.5 1.1 2.6 0.9
FH 2140.7 20.2 1.3 1.3 20.9
LiF 2138.8 21.6 1.6 5.2 1.0
C2H2 2405.3 0.0 2.0 1.7 21.6
C2H4 2562.4 3.4 1.1 2.4 20.1
C2H6 2710.7 6.5 20.5 1.3 0.5
HCN 2316.3 24.2 2.6 5.0 4.8
CO 2259.2 23.3 3.0 0.8 0.5
HCO 2278.3 29.5 23.0 22.7 24.4
HCO 2373.4 25.1 20.7 20.2 21.1
CH3OH 2511.6 0.3 20.3 1.1 2.5
N2 2228.5 211.6 20.9 2.8 6.7
N2H4 2437.8 29.6 26.2 2.0 7.5
CO2 2388.9 212.4 20.8 25.2 25.9
SiH2

1A1 2151.4 20.3 22.0 0.4 20.6
SiH2

3B1 2130.7 0.3 22.1 21.3 21.7
SiH3 2226.7 3.0 20.8 1.5 20.2
SiH4 2321.4 3.9 21.8 1.7 21.8
PH2 2152.8 24.9 25.9 22.1 22.8
PH3 2242.0 20.8 23.0 0.0 20.7
SH2 2182.3 1.6 0.3 20.6 22.4
HCl 2106.2 1.5 0.8 20.6 21.1
NaCl 297.8 5.4 4.2 2.3 23.1
SiO 2192.2 22.3 4.8 5.0 2.6
SC 2171.2 21.1 4.6 0.2 22.1
Si2H6 2529.5 10.0 20.2 1.8 25.8
CH3Cl 2393.6 4.1 1.5 20.1 1.3
CH3SH 2472.7 10.2 7.4 6.2 5.9
Li2 224.4 3.5 3.4 6.7 20.0
CN 2179.0 212.3 20.5 1.5 22.4
NO 2152.9 213.9 22.7 21.0 1.0
O2 2120.4 215.2 23.5 24.5 27.3
H2O2 2268.6 25.7 3.0 5.0 5.1
F2 238.5 29.6 2.3 3.0 20.1
Si2 274.7 1.1 4.9 1.3 25.2
P2 2117.2 24.8 0.5 20.6 1.8
Na2 216.8 21.2 20.5 1.7 26.3
S2 2101.6 25.2 21.3 27.2 26.8
Cl2 257.9 0.5 2.8 22.6 3.0
SO 2125.1 29.0 21.2 23.3 24.4
ClO 264.3 210.3 22.0 23.8 22.2
ClF 261.4 25.2 0.8 21.6 0.8
HOCl 2164.3 24.0 1.2 20.5 2.9
SO2 2258.5 26.1 7.7 2.3 3.5

G2 totals Expt. BLYP B3LYP B1B95 VSXC

uxu — 4.8 2.5 2.3 2.5

sx — 9.3 4.2 3.2 3.3
Max. Dev. ~1! — 10.2 7.7 6.7 7.5
Max. Dev. ~2! — 15.2 8.2 7.2 7.3
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statistical summary of the results, presented in Table X.
comparison, the same results for BLYP, B3LYP and B1B
are also presented, along with the results for the G2 met
itself.33 All calculations used MP2/6-31G* optimized geom-
etries and scaled HF/6-31G* zero-point energies as in Re
33. As can be seen from the table, the thermochemistry
dicted by VSXC is the most accurate of any of the dens
functional methods considered. The results for VSXC
almost a factor of 3 better than for BLYP and also somew
better than for B3LYP or B1B95, but noticeably worse th
those given by the more sophisticated G2 method, w
VSXC giving an average absolute error of 2.7 kcal/mol co
pared to 1.6 for the G2 method. The results for VSXC co
probably be improved somewhat if the Kohn-Sham op
mized geometries were used instead of the MP2/6-31G* ge-
ometries, but only by a few percent. Hence while VSXC fa
short of the excellent results of the G2 method, our res
strongly indicate that it offers competitive thermochemis
when compared to some of the best existing functionals.

It is also instructive to see how well our method predi
optimized structures. For this purpose, we have calcula
the optimized geometries provided by VSXC over the se
diatomic molecules in the G2 set and presented the resul
Table XI. This set has previously been proposed
Handy7,24 and furnishes a simple measure of the accuracy
the geometries provided by a given method. As can be s
from the table, the average absolute error of 0.013 Å
VSXC is somewhat worse than that provided by the hyb
methods B3LYP and B1B95, which give average absol
errors of 0.010 and 0.009, respectively. On the other han
shows some improvement over the results for BLYP, wh
has an average absolute error of 0.019 Å. It is interestin
note that VSXC performs very comparably to the hyb
methods with the exception of the two alkali metal diatom
Na2 and Li2 for which it severely overestimates the bon
lengths. It is not clear why these molecules should pres
such difficulty for an otherwise accurate method. The ch
lenge involved in improving the bond lengths without reso
ing to the use of Hartree-Fock exchange has been note
other authors.18,24,26We see here that VSXC succeeds in p

TABLE IX. Statistical deviations (mEh) from Hartree-Fock total energie
over the G2 set.

Becke-88 VSX

uxu 45.0 7.1
sx 61.6 9.0
Max. Dev. ~1! 54.1 19.3
Max. Dev. ~2! 165.3 21.1

TABLE X. Statistical deviations~kcal/mol! over the G2/97 set of Ref. 33

BLYP B3LYP B1B95 VSXC G2

uxu 7.1 3.1 2.9 2.7 1.6
sx 9.5 4.5 3.9 3.6 2.1
Max. Dev. ~1! 28.4 8.2 14.3 11.6 8.2
Max. Dev. ~2! 24.8 20.1 14.2 9.5 7.1
r
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in improving these results, but some insight is needed
make the improvement universal for all types of bonds.

We have also applied our implementation of the VSX
form to try to predict the electron affinities of two very di
ficult atoms, O and F. Electron affinities were not conside
as part of our fitting set as a matter of convenience, as s
methods give very unstable results for negative ions. In s
of the fact that our method was not calibrated to these s
tems, we see in Table XII that the results given by VSXC
these electron affinities are excellent, giving comparable
sults to a large-basis coupled-cluster single double~triple!
@CCSD~T!# calculation. Additionally, we have looked at th
activation energy for the reaction H21H→H1H2. As can be
seen from Table XIII, BLYPseverelyunderestimates the
barrier for this reaction, as compared to the accurate q
dratic configuration interaction@QCISD~T!# result. This is, in
fact, typical of GGA functionals. B3LYP and B1B95 bot

TABLE XI. Optimized diatomic bond lengths in angstroms for vario
functionals using a 6-3111G~3df,2p! basis set.

Molecule Exact BLYP B3LYP B1B95 VSXC

BeH 1.343 1.347 1.341 1.344 1.362
CH 1.120 1.132 1.122 1.122 1.129
Cl2 1.988 2.040 2.010 1.979 2.006
ClF 1.628 1.673 1.642 1.619 1.648
ClO 1.570 1.600 1.576 1.557 1.576
CN 1.172 1.174 1.162 1.159 1.170
CO 1.128 1.136 1.124 1.121 1.131
F2 1.412 1.431 1.394 1.375 1.413
FH 0.917 0.932 0.922 0.916 0.918
H2 0.741 0.746 0.743 0.741 0.741
HCl 1.275 1.289 1.280 1.274 1.273
Li2 2.673 2.708 2.700 2.713 2.735
LiF 1.564 1.584 1.572 1.573 1.594
LiH 1.595 1.597 1.590 1.596 1.617
N2 1.098 1.103 1.091 1.087 1.097
Na2 3.079 3.047 3.040 3.061 3.154
NaCl 2.361 2.385 2.371 2.370 2.395
NH 1.036 1.050 1.039 1.037 1.041
NO 1.151 1.161 1.144 1.138 1.151
O2 1.208 1.228 1.203 1.191 1.211
OH 0.971 0.985 0.974 0.969 0.971
P2 1.893 1.910 1.888 1.875 1.889
S2 1.889 1.928 1.903 1.883 1.899
SC 1.535 1.548 1.531 1.525 1.540
SiO 1.510 1.530 1.511 1.505 1.519
SO 1.481 1.512 1.488 1.477 1.494

uxu — 0.019 0.009 0.010 0.013

TABLE XII. Electron affinities ~eV! of O and F using various methods
Coupled-cluster results from Ref. 34 and experimental results from Ref.

Method O F

BLYP 1.70 3.65
B3LYP 1.60 3.46
B1B95 1.63 3.59
VSXC 1.42 3.44
CCSD 1.25 3.19
CCSD(T) 1.42 3.36
Expt. 1.46 3.40
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give improved results by using exact exchange, which
verely overestimates this barrier height, to bring the sev
underestimate given by the generalized gradient expan
closer to the true result. The predicted barrier for VSXC
comparable to the results given by the hybrid functiona
lying somewhere between the more accurate B1B95 and
less accurate B3LYP. Work to examine the results obtai
by this functional for other activation energies is in progre
but this initial result indicates that our form may offer com
petitive barrier heights as well.

VII. CONCLUSIONS

In this paper, we have presented a novel form for the
functional and implemented it in a Kohn-Sham fashion. T
functional does not appeal to knowledge of the exact
change energy to compute the XC energy, but rather re
on a more accurate representation of the exchange-en
functional that includes the kinetic energy densityt to im-
prove overall energetics. Hence our approach provides a
sible alternative to the current ‘‘hybrid’’ansatzof exact-
exchange mixing9,8,10,35which has, to date, offered by far th
best results available within the framework of density fun
tional theory. By assessing the accuracy of the VSXC fu
tional over a very large set of systems, including both a la
training set and numerous other chemically interesting s
cies, it is concluded that VSXC appears to offer appro
mately the same energetic accuracy as the ‘‘hybrid’’ meth
mentioned previously without resorting to the use of ex
exchange. This is in accord with the conclusions reache
Ref. 26 using a B88-type exchange functional and a corr
tion functional that models the Coulomb hole.36

There are certain shortcomings of the VSXC form. T
optimized geometries are in general quite good, but VS
shows a strong overestimation of the bond lengths for
alkali metal diatomics. Additionally, there are still certa
‘‘difficult’’ molecules such as C2 and FNO whose energetic
are not treated well by any of the XC functionals conside
in this paper. These shortcomings indicate that some
provements still need to be made in order to obtain tr
uniformly satisfactory results from DFT. Future work ma
investigate the possibility of addressing these difficult
within a similar framework. Most notably, it would be in
structive to take into consideration the uniform and nonu
form scaling requirements for the correlation energy.14 This
would offer a much more physical approximation to the c

TABLE XIII. Activation energies~kcal/mol! for the reaction H21H using
various methods. All calculations performed with the 6-3111G~3df,2p! ba-
sis, except for the QCISD~T! calculation, which utilized the CC-VQZ basis

Method H2 Re TS Re Ea

HF 0.734 0.932 17.7
BLYP 0.746 0.935 2.9
B3LYP 0.743 0.929 4.3
B1B95 0.741 0.929 7.5
VSXC 0.741 0.929 5.5

QCISD(T) 0.741 0.929 9.8
e-
re
on
s
,

he
d
,

s
-

es
rgy

s-

-
-
e
e-
-
s
t
in
a-

C
e

d
-

y

s

i-

-

relation energy, in contrast to the admittedly simplistic for
we have used.

Hence we conclude that the functional form proposed
this paper shows great promise for the fast and accu
evaluation of exchange-correlation energies within a Ko
Sham framework. Our results also strongly indicate that
cellent thermochemistry can be obtained using function
that do not contain HF exchange, contrary to the conclusi
that have been drawn previously.8–10,35Further work is war-
ranted to evaluate more precisely the utility of this function
as a general alternative to exact-exchange mixing. It is,
example, unclear whether our prescription will mimic th
benefits of exact exchange on the magnetic couplings of
tiferromagnetic materials.37 However, the initial results pre
sented herein are very encouraging.
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APPENDIX: CONSTRUCTION OF THE TRAINING SET

Several previous works8,9,26 have used the G2 set of a
omization energies and ionization potentials20 to optimize
and test various functionals. However, this set includes o
55 atomization energies and 42 ionization potentials. Si
our functional has no less than 21 different parameters
may be adjusted, it seems to us that this set is too smal
that it needs to be augmented. Recently, the so-called ‘‘
97’’ set has been introduced,33 which adds a large number o
heats of formation to the original set. However, most of the
molecules are substituted organic species, and it is e
noted in Ref. 33 that density functional methods seem
uniformly perform well for these systems. Further, many
the molecules are quite large~10–20 atoms! which is a sig-
nificant computational expense for a single element of a
ting set. Hence we eschew the full G2/97 set as a fitting
Instead, we begin with the original G2 set of atomizati
energies20 and ionization potentials, and attempt to add to
smallspecies that are expected to be more stringent tests
density functionals.

As far as ionization potentials~IPs! go, the G2 set is a
nearly exhaustive list of the accurately known values. W
had difficulty obtaining with consistency the ionization p
tentials for N2 (2P) and SH2

3B1 because certain steps in ou
fitting procedure required the calculations to be run witho
symmetry which made converging to anything other than
ground state difficult. For this reason, we removed these
values from the set and compensated by adding the IP
F2 , NO and C2. Additionally, there are a number of mo
ecules in the G2/97 set which are shown in Ref. 33 to
‘‘difficult’’ cases for DFT. We have selected several of the
systems, and also several additional molecules from the
erature for which the heats of formation are accurat
known. This procedure produced 28 additional atomizat
energies.




