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A new approximate form for the exchange-correlation energy functional is developed. The form is
based on the density matrix expansi@®ME) for the exchange functiongaR. M. Koehl, G. K.

Odom, and G. E. Scuseria, Mol. Phy&7, 835 (1996]. The nonlocal portion of the correlation
energy is assumed to have the same general form as that derived for exchange, while the local
portion is taken to be that of the uniform electron gas. The resulting formula does not resort to the
use of exact-exchange mixing. A Kohn-Sham implementation of this functional is constructed and
the parameters within the functional are adjusted to minimize the difference between the theoretical
and the experimental data for a large set of atomic and molecular systems. The results are found to
compare favorably with existing functionals, even those which include exact-exchange mixing.
© 1998 American Institute of Physids50021-960808)00126-3

I. INTRODUCTION indicate that the errors inherent in current functionals should

.. be corrigible without appealing to higher than first deriva-
The fundamental theorem of most modern appl|cat|on§ives of the density.

of density_faunct.ional theoryDFT) is the theorem of Kohn Becke has investigated various methods of using the ex-
and Sharh 3 which states that th.e exact ground state eNergyct, Hartree-Fock-style exchange energy to improve approxi-
of any many-electronic system is given by mations to the true XC functional. Such forms are often re-
ferred to as “hybrid” functionals, and Becke has fodntf
= + + + . T .

Eolp]=Tdpl+ o]+ End p]*Eudpl, @ that exact-exchange mixing can significantly improve the re-
whereT{ p] is the noninteracting kinetic energy sults obtained from G(_3A-style functionals. Therg are, how-
ever, drawbacks to using exact exchange. Most importantly,

occ the Hartree-FockHF) exchange energy is known to give

Ts[P]:J > |V¢i|2drEJ 7dr, (2)  qualitatively incorrect results for transition-metal complexes

' and other systems in which there are a number of low-lying
J[p] is the classical Coulomb repulsion energ,d p] is virtual orbitals whose interactions with the occupied orbitals

the energy of the electrons in the external field of the nuclef™® Not treated. Density functionals do not seem to suffer
and E, [ p] is the exchange-correlatiofKC) energy. The from .thIS difficulty, since they qompute the energy based on
wonderful thing about Eq(1) is that the first three terms on density and not orbital Iltljzctuatmns. _ _ -

the right hand side of the equation are well-known and [N @ pair of art|plesl,' we have investigated the utility
readily calculable functionals of the electronic density. TheOf @ Taylor series-like density matrglf?expansmME), first
disheartening fact is that the analytic form of the XC func-introduced by Negele and Vautherinto approximate HF
tional is not, and probably cannot ever be, known. The goaf*change. The resulting functional has a GGA-like depen-

of this article is to develop better approximations to the exacflence onp and Vp but also includes terms that depend on
E.dpl. the noninteracting kinetic energy density Since the Kohn-

One useful approximation to the true XC functional is Sham energy functional already depends mothrough the

the so-called generalized-gradient approximaiGiGA).*-° definition of T p] in Eq. (2), such a term does not require

This approximation assumes that the exchange-correlatiofny additional information about the electron distribution,
functional is given by: but merely defines a more flexible form for the XC-

functional. It was fountf that such a form gives very en-
couraging results for the approximation of the exact-
Exc[P]:f f(p,Vp)dr, ©) exchange energy.

In the present work, we investigate the possibility of
wheref is simply a function of the values of the density and applying the form that arises from the DME to approximate
its gradient at the point. Functionals of this form have been the entirety of the XC-functional instead of the exchange part
shown to give very good results. Further, Neumann andlone. Because we have already seen that the DME possesses
Handy have showhthat simple methods of adding higher- the ability to approximate the HF exchange-energy, one cir-
order derivatives of the density to existing approximations ofcumvents the use of exact-exchange mixing. Nonetheless,
the general form of Eq(3) do not seem to significantly im- the accuracy of the resulting functional is shown to be com-
prove the agreement with the exact results. This seems foetitive with established XC-functionals.
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ing requirements. The only way for this to be true, however,
is for y*(x,z) to scale as the limiting value of the above Ex[P]Ef pU,dr, (20

sequence)*®. The simplest form that scales in this fashion

and satisfies the requirement that the Fermi momentum b converge exponentially to zero for largeThe exchange
recovered for uniform densities is energy density for the DME witk modified by the factor of

Eqg. (18) also has an exponentially decaying behavior. This

Y(x,2)=1+ a(x2+2). (1)  differs from the known exact fort
This is the form that we have selected for the present study. lim U$*@°s — o (21)
One might nominally expect that different coefficients for r—e

thex? andz terms would give an improved description of the However, we note that for a functional of the form
exchange energy, but we have found empirically that this is

not the case, and so we retain the form of Ex) for sim- E [p]:J p¥3g(x,z)dr (22)
plicity. One consequence of using thy$x,z) is that for any X ’

truncatedversion of the DME, one finds that the approxi- this condition isincompatiblewith the exact nonuniform
mate exchange energy scales to zero under nonuniform sc&aling requirements of EqéL3) and (14). Specifically, Eq.
ing. Hence, while the true exchange as given by the |nf|n|t6(21) requires that for large, or equivalently largex, the

order DME using thisy(x,z) scales to a negative constant ¢nnancement functiog(x,z) take the asymptotic form
under nonuniform scaling, the form of the DME seems to

indicate that it is more appropriate to require that any finite-  9(X,2)*x/log(x) (23

order approximate functional scale to zero in this limit. which is easily seen to violate both Eqe&l3d) and (14).
It is very important to note that even though the expan-Hence, the best we can hope for from our general approach is

sion in Eq.(6) contains the correct second order coefficientan exchange energy density that goes to zero exponentially,
for j3(ks)/ks it does not include all the terms that depend onwhich is achieved by the current form.

x andz. This is because the exact expansion uses Legendre |t is clear that, in principle, the ratios of the coefficients

polynomials for the derivative operator. Even the highest org, e, andf are fixed by the values di andc, since this
der polynomials from this family have terms that are lowfourth order term is proportional to the square of the second
order in its argument, and hence every term in the expansiogrder term. However, we choose to allow these ratios to vary
of Eq. (6) will depend partly onx* andz. If one were some-  with the expectation that if the constraint that fixes these
how able to reexpress thénfinite) expansion simply in ratios is physically significant, our parameter selection
terms of the powers of the differential operator, one wouldscheme should discover this independent of our derivation.
obtain an equation with the exact contributionsxdfandz.  Also, since we have inserted a parameter in front of the LDA
However, since the mathematical identity® that allows us  term, our functional will not retain the correct result for the
to perform the DME applies exclusively to Legendre poly- yniform electron gas limit. However, it has been shown in
nomials and spherical Bessel functions, and the Bessel fungur previous investigatioh'?that a small violation of this
tions must be retained in order to obtain the LDA density|imit drastically improves results for molecular systems, and

matrix as in Eq(6), it is at the very least not a straightfor- so we include it here. It is also instructive to present the
ward task to do this transformation analytically. However,trivial generalization of Eq(19) to open shells,

since all the higher order terms will look precisely like the )
terms we have already obtained, the total effect of all higher K CVT4 -3 a3l @ n bx, +cz,
order terms is just to alter the coefficients of the terms in Eq. [Paspp]= = ) Pr 5y (x2) vA(X,2)

. . . o\™
(7). To account for this effect, we insert adjustable param-

eters in front of each term to obtain, after some simplification dx§+ ex§20+ fzg
and absorbing any multiplicative constants into the param- 3 dr, (24
eter set Yo(X:2)

where

a +bx2+cz
Y(X2)  43(x,2)

Yo(X,2) =1+ a(X2+2,) (25)

ESVT4 p]= J p*3

andx, andz, are the same asandz, merely evaluated for
the @ and B densities as opposed to the total density. We
dr. (19 note that the GVT4 form above gives results comparable to
the exchange functional of Ref. 12.

dx*+exlz+ 72
Y3(%,2)

We will, for convenience, call this the GVT4 functional due
to the similarity to the GMVT. functional defined in Ref. 12 Il. CONSTRUCTION OF THE
except that the current form includes some of the effects o XCHANGE-CORRELATION FORM
the squares of the second order teifiasirth order termps

We note that a very similar choice f&® was made in It has been showh!? that the DME forms discussed
Ref. 12 in order to force the exchange energy densigr), above are sufficiently flexible to accurately describe the
defined by exact-exchange energy. One would, of course, like to find a
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way to confer this same flexibility and accuracy on a corre-ion) to vary independently. Since we know this form is flex-
lation functional. To this end, we note that the exchangedble enough to describe exchange, one hopes that it will also

functional in Eq.(24) has the general form be sufficiently flexible to describe correlation phenomena.
Hence we define our exchange-correlation form to be the
Ex[pa,Pﬁ]“E J'p(re)lzl?ff(x(rvzo')dr! (26)  exchange functional of E424) together with the correlation

form Eq. (32) with the dimensionless nonlocal factor of Eq.
(27). This functional form will be referred to as the VSXC

if we choose
form.
a bx2+cz, dxi+exiz,+fz2 Now, this functional form has the drawback that the
f(Xy125)= 7o .2) + 2(x.2) + 2(x2) - number of parameters is quite large. Handy and

@27) collaborator® have shown recently that a large number of
parameters does not necessarily guarantee proportionally

That is, our exchange functional can be expressed up to asetter results, but that it is more important that the terms that
overall numerical prefactor as the exchange energy for thare included via the parametrization grhysically signifi-
uniform electron gas times a dimensionless, nonlocal funceant The primary hurdle that having so many parameters
tion f(x,,z,). Since this function is dimensionless, and invokes is that it becomes necessary to fit them over a very
therefore independent of the energy scale of the problem, orarge number of systems in order to be certain that the results
expects that it should be, in some sense, transferable betwegius obtained are not simply due to the numerical fit, and to
different types of energy functional. The only difficulty in ensure that the resulting parameters are robust. However,
our case lies in how this function may be incorporated into anoting that there are essentially an infinite number of systems
correlation functional in a consistent, physical manner.  this functional may be applied to, one can increase the fitting

The correlation formalism we shall use to accomplishset without bound until the number of parameters ceases to
this is the one proposed by Beck8ecke defines same-spin be a concern.

and opposite-spin correlation functionals, We also note here that our definition Bf; is slightly
different from that given by Becke!® We have modified his
EJ7 = f f77" (x,2)e00 dr, (28)  definition so thaD, is pseudo-zeroth order in the derivatives

of the density. This is significant because our DME expan-

oA sion is essentially a Taylor expansion, and should therefore
Ec =J f77(Xs,24)D 4€¢pedr, (29 pegin with a term that is of order zero in the differential.
where IV. COMPUTATIONAL METHOD
X=X2+x5,  7=2,+24 (30) The first thing that must be done in order to determine

and the same-spin and opposite spin LDA correlation partghe quality of the VSXC form is to obtain the optimal values

are as defined by Sta#it al® The factorD , is a dimension- of the parameters in th_e functional. For_thls purpose, we ha_ve
; constructed an extensive set of experimental values against
less factor given by

which the results obtained by the VSXC functional will be
X2 compared. Our set includes the G2 set of moleéflasd
o=1- 4(z—+CF) (3D also a large number of other species as described in the Ap-
7 pendix. All the fitting calculations are performed at the ex-
D, is easily seen to be zero for any system with only oneperimental geometries using a 6-31G(3df,2p basis. Fur-
orbital. Since our same-spin correlation is multiplied by thisther details on how the calculations were done are also
factor, this term guarantees that the correlation energy is zefgiscussed in the Appendix.
for any one-electron system, which is certainly a desirable  Now, several authors have proposed the use of certain
trait for a correlation functional. With these definitions, onestandard atomic and molecular densities as the testing
constructs the correlation energy as grounds for novel functionafs:1%21~23This has the obvious
E.= Eg,3+ Ega+E§p_ 32) advantage of being signific_antly faster than a full Kohn-
Sham treatment, but the major drawback is that an excellent
Our approach is to simply utilize the same functfgix,z) as  functional at any given fixed density does not necessarily
was used to describe exchange and insert it into each of theanslate into an excellent functional in a Kohn-Sham
correlation forms above, where we use the recent parametescheme. Further, it is not altogether clear that a fixed density
ization of Perdew and Wang for the local correlation fdfm. should be appropriate for the comparison of two XC func-
This choice is not in any way motivated by physical con-tionals, since density relaxation, which would be accounted
cerns, but should rather be considered a convenient approXir in a KS treatment, may be an important phenomenon for
mation. The bulk of the difference between the exchange andny given chemical system. For these reasons, we have de-
correlation energies should be accounted for by the presenaided to use only fully self-consistent Kohn-Sham densities
of the uniform electron gas functional multiplying each of for our comparisons.
the dimensionles$(x,z)’'s. We attempt to account for any Since our functional depends on the kinetic energy den-
further differences by allowing the parameters in each of thesity, 7, a traditional KS scheme employing the functional
three termgexchange, same-spin and opposite-spin correladerivative of the energy with respect to the density to obtain

D
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VSXC satisfies the Lieb-Oxford bound for exchalig@The  TABLE II. Energy Differences(kcal/mo) from experimental atomization
Lieb-Oxford bound requires that the exact LDA-exchange®"e'9ies Pe) for the G2 se(ZPVE correcteyt
enhancement factor, in our cabgx,z), should satisfy

Molecule Expt. BLYP B3LYP B1B95 VSXC
f(x,2)>—2.12 (34) LiH -57.7 -01 -06 36 26
BeH -496 -7.4 -82 —44 0.1
CH -837 -18 -16 1.4 0.3
for all possible values ok andz. Since our enhancement CH, 3B, -189.8 -0.0 -21 00 -18
factor is a function of two variables, it is not easily displayed CHy'A, -180.5 05 -0.2 35 0.9
for examination, nor is the equation for the minimum value CH;, —-3064 -05 -33 06 36
easily solved analytically. However, it is possible to verify CH, —419.1 23 -16 11 -19
that the minimum value of our exchange enhancement factor N" —834 60 45 02 05
is attained wherx~26 andz~40, where the enhancement E:z :;g%g :;'Z :g‘g 22 _11'19
factor is about-1.88. The er_1hanc_ement factor f(_)r the whole OH3 _106:3 _3:3 _1:8 0:4 —o.é
of LDA XC should also satisfy this bound, but it would be H,0 —2321 -05 1.1 26 0.9
extremely difficult to examine the behavior of the total XC FH -140.7 -0.2 1.3 1.3 -0.9
enhancement factor, since there are different enhancement LiF -1388 -1.6 1.6 5.2 1.0
factors for each piece, and such an analysis would therefore C.H, —405.3 0.0 2.0 17 -16
require evaluation of the relative magnitudes of the various  C2Hs —562.4 3.4 11 24 -01
terms. Hence we refrain from this in the present paper. How- €2 -rlor 65 -05 13 05
ever, it is very encouraging that the exchange part, which ggN :gégg :gg g'g g'g 3'2
makes up the majority of the XC energy, satisfies this impor- |~ 2783  -95 -30 -27 —aa
tant bound. HcO -3734 -51 -07 -02 -11
The results obtained with the optimal parameters over  cH,0H —511.6 03 -03 11 25
the training set are listed in Tables 11—V together with the N, -2285 -11.6 -0.9 2.8 6.7
results with the standard functionals BLYP?? B3LYP? NoHa -437.8 -96 6.2 2.0 7.5
and B1B95° The lattermost of these was specifically imple- Co, —-3889 -124 -08 -52 59
mented for this work following Ref. 24. In Table VI, we list SiH, ;Al -151.4  -03 20 04 -06
the overall statistics for each method. The results presented :f:z By :;ig; g'g :(2)'; _1135 :(1);
in thgse tables must b.e Faken Wi.th a grain of salt, .since our S:Hj _3914 39 —18 17 -18
functional has beewptimizedto give the best possible re- PH, 1528 -49 -59 21 -28
sults over this set. With thisaveat we note that the results PH; —2420 -08 -30 00 -07
given by the rather naive VSXC form are very encouraging.  sH, -182.3 1.6 03 -06 —24
They compare favorably to the results of the established HCI -106.2 15 08 -06 -—11
functionals, even B1B95 and B3LYP, which include exact  NaCl -97.8 5.4 4.2 23 31
exchange mixing. In fact, the standard deviation of .2, Sio -1922  -23 48 5.0 2.6
over the entire set for VSXC is actually lower than that ob-  S¢ “irl2 -1l 4.6 0.2 -21
) . SipHg -5295 100 -0.2 1.8 -58
tained by any of the other functionals. The average absolute CH,CI 3936 a1 15  —01 13
errors for B1B95 and VSXC are essentially the same, 4.6 gy 4727 102 74 6.2 59
mE, compared to 4.7, and both are significantly better than |, —24.4 35 3.4 67 —0.0
B3LYP, with an average absolute error of &¥,,. A com- CN -179.0 -123 -05 15 -24
parison of the results of our functional to those of BIB95 and  NO -1529 -139 -27 -10 1.0
B3LYP over this set is probably fair in spite of the fact that 0, —-1204 -152 -35 45 73
our functional was optimized over this set, since the latter ~ H20: —2686 —57 3.0 5.0 5.1
two were, themselves, fitted to a set which included about P2 ~s85 96 23 30 -01
70% of the molecules in our full set. As far as functionals §'2 :11‘;; 741'81 g's 70163 _ié
that do not employ exact-exchange mixing go, we see that N2a2 168 -12 —05 17 -63
VSXC offers a very significant improvement over the BLYP S, ~1016 -52 -13 -72 -68
functional, giving errors that are generally less than half as  ci, -57.9 0.5 28 -26 3.0
large as those for the established form. SO -1251 -90 -12 -33 -44
It is important to note that certain molecules in the train- Clo -643 -103 -20 38 22
ing set are described poorly by all of the XC functionals  CIF —614  -52 08 -1.6 0.8
examined herein. Most notably, the atomization energy,of C ~ HOC! -1643  —40 12 -05 2.9
S0, -2585 —6.1 7.7 23 35

is significantly underestimated by all the functionals. This is
understandable, since the proper description of the ground G2 totals Expt. BLYP B3LYP B1B95 VSXC
state of G is known to involve a significant amount of non-

; . o e Ix[ — 48 25 2.3 25
dynamical correlatioR? a phenomenon which is very diffi- |;(| B o3 o ap 5o
cult to account for in density functional theotyWe think Max. Dev. (+) B 02 77 67 :

that the identification of molecules such as this are crucial to  pax. pev.(-)
the systematic improvement of existing density functionals

— 15.2 8.2 7.2 7.3
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TABLE IX. Statistical deviations f1E;,) from Hartree-Fock total energies TABLE XI. Optimized diatomic bond lengths in angstroms for various

over the G2 set. functionals using a 6-311G(3df,2p basis set.
Becke-88 VSX Molecule Exact BLYP B3LYP B1B95 VSXC
X[ 45.0 7.1 BeH 1.343 1.347 1.341 1.344 1.362
oy 61.6 9.0 CH 1.120 1.132 1.122 1.122 1.129
Max. Dev. (+) 54.1 19.3 Ccl2 1.988 2.040 2.010 1.979 2.006
Max. Dev. (—) 165.3 21.1 CIF 1.628 1.673 1.642 1.619 1.648
clo 1.570 1.600 1.576 1.557 1.576
CN 1.172 1.174 1.162 1.159 1.170
co 1.128 1.136 1.124 1.121 1.131
- . F2 1.412 1.431 1.394 1.375 1.413
stat|st|c§1| summary of the results, presented in Table X. For 0.917 0.932 0.922 0.916 0.918
comparison, the same results for BLYP, B3LYP and B1B95 H2 0.741 0.746 0.743 0.741 0.741
are also presented, along with the results for the G2 method HCI 1.275 1.289 1.280 1.274 1.273
itself.33 All calculations used MP2/6-31Goptimized geom- I[‘,E i-ggi i-;gj i;gg i;g i;gi
etries and scaled HF/6-3TGzero-point energies as in Ref. ; ' ' ' ' :
. LiH 1.595 1.597 1.590 1.596 1.617
3_3. As can be seen from the table, the thermochemistry pre- 1.098 1103 1.091 1.087 1.097
dicted by VSXC is the most accurate of any of the density- Na2 3.079 3.047 3.040 3.061 3.154
functional methods considered. The results for VSXC are NacCl 2.361 2.385 2371 2.370 2.395
almost a factor of 3 better than for BLYP and also somewhat Ng 1.036 1-020 1.039 1-0% 1.041
better than for B3LYP or B1B95, but noticeably worse than N 1.151 1.161 1.144 1.1 1.151
. - 02 1.208 1.228 1.203 1.191 1.211
those given by the more sophisticated G2 method, with o 0.971 0.985 0.974 0.969 0.971
VSXC giving an average absolute error of 2.7 kcal/mol com-  p2 1.893 1.910 1.888 1.875 1.889
pared to 1.6 for the G2 method. The results for VSXC could S2 1.889 1.928 1.903 1.883 1.899
probably be improved somewnhat if the Kohn-Sham opti- 2% igfg i-ggg igﬁ iggg i-g;‘g
. . . * i . . . . .
mized geometries were used instead of the MP2/6*34& SO 1481 112 1 488 1477 1404

ometries, but only by a few percent. Hence while VSXC falls
short of the excellent results of the G2 method, our results  [x| — 0.019 0.009 0.010 0.013
strongly indicate that it offers competitive thermochemistry
when compared to some of the best existing functionals.

It is also instructive to see how well our method predicts ) o )
optimized structures. For this purpose, we have calculatetd improving these results, but some insight is needed to
the optimized geometries provided by VSXC over the set offake the improvement universal for all types of bonds.
diatomic molecules in the G2 set and presented the results in e have also applied our implementation of the VSXC
Table XI. This set has previously been proposed byfprm to try to predict the electron_a_ff_lnmes of two very dif-
Handy' 24 and furnishes a simple measure of the accuracy oficult atoms, O _apd F. Electron affinities were not considered
the geometries provided by a given method. As can be seeis Part of our fitting set as a matter of convenience, as some
from the table, the average absolute error of 0.013 A fofmethods give very unstable results for negative ions. In spite
VSXC is somewhat worse than that provided by the hybridOf the fact that our method was not calibrated to these sys-
methods B3LYP and B1B95, which give average absolutdems, we see in Table Xl that the results given by VSXC for
errors of 0.010 and 0.009, respectively. On the other hand, these electron affinities are excellent, giving comparable re-
shows some improvement over the results for BLYP, whichSults to a large-basis coupled-cluster single doubigle)
has an average absolute error of 0.019 A. It is interesting ttCCSDT)] calculation. Additionally, we have looked at the
note that VSXC performs very comparably to the hybrid@ctivation energy for the reaction,HHH—H+H,. As can be
methods with the exception of the two alkali metal diatomicsS€en from Table XIll, BLYPseverelyunderestimates the
Na, and Li, for which it severely overestimates the bond barrier for this reaction, as compared to the accurate qua-
lengths. It is not clear why these molecules should preserfiratic configuration interactiofQCISD(T)] result. This is, in
such difficulty for an otherwise accurate method. The chalfact. typical of GGA functionals. B3LYP and B1B95 both
lenge involved in improving the bond lengths without resort-
ing to the use of Hartree-Fock exchange has been noted b

other authoré?’z“'ZGWe see here that VSXC succeeds in part1}/ABLE XIl. Electron affinities (eV) of O and F using various methods.
Coupled-cluster results from Ref. 34 and experimental results from Ref. 20.

Method O F
TABLE X. Statistical deviationgkcal/mol) over the G2/97 set of Ref. 33.

BLYP 1.70 3.65
BLYP B3LYP B1B95 VSXC G2 B3LYP 1.60 3.46
— B1B95 1.63 3.59
[X| 7.1 3.1 2.9 2.7 16 VSXC 1.42 3.44
Oy 9.5 4.5 3.9 3.6 2.1 CCSD 1.25 3.19
Max. Dev.(+) 28.4 8.2 14.3 11.6 8.2 CCSD(T) 1.42 3.36

Max. Dev.(—) 24.8 20.1 14.2 9.5 7.1 Expt. 1.46 3.40




J. Chem. Phys., Vol. 109, No. 2, 8 July 1998 T. Van Voorhis and G. E. Scuseria 409

TABLE XIll. Activation energies(kcal/mo) for the reaction B+H using  relation energy, in contrast to the admittedly simplistic form
various methods. All calculations performed with the 6-3GQ(3df,2p ba- we have used

sis, except for the QCISD) calculation, which utilized the CC-VQZ basis. . .
P Q Q Hence we conclude that the functional form proposed in

Method H, Re TSR, E, this paper shows great promise for the fast and accurate

valuation of exchange-correlation energies within a Kohn-
" 0734 0.932 v ghaua;o of e I((: gge coleatlo e egleg d't ah 0
BLYP 0.746 0935 29 am framework. Our resu ts also strpngy in icate t f';\t ex-
B3LYP 0.743 0.929 43 cellent thermochemistry can be obtained using functionals
B1B95 0.741 0.929 7.5 that do not contain HF exchange, contrary to the conclusions
VSXC 0.741 0.929 55 that have been drawn previousty:***Further work is war-
QCISD(T) 0.741 0.929 9.8

ranted to evaluate more precisely the utility of this functional
as a general alternative to exact-exchange mixing. It is, for
example, unclear whether our prescription will mimic the

benefits of exact exchange on the magnetic couplings of an-

give improved results by using exact exchange, which setiferromagnetic materiaf¥. However, the initial results pre-
verely overestimates this barrier height, to bring the severgented herein are very encouraging.

underestimate given by the generalized gradient expansion

closer to the true result. The predicted barrier for VSXC is

comparable to the results given by the hybrid functionalsACKNOWLEDGMENTS
lying somewhere between the more accurate B1B95 and the
less accurate B3LYP. Work to examine the results obtainegj ati
by this functional for other activation energies is in progress
but this initial result indicates that our form may offer com
petitive barrier heights as well.
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APPENDIX: CONSTRUCTION OF THE TRAINING SET
VIIl. CONCLUSIONS _ 2
Several previous workS'?® have used the G2 set of at-

In this paper, we have presented a novel form for the XComization energies and ionization potentilso optimize
functional and implemented it in a Kohn-Sham fashion. Thisand test various functionals. However, this set includes only
functional does not appeal to knowledge of the exact ex55 atomization energies and 42 ionization potentials. Since
change energy to compute the XC energy, but rather reliesur functional has no less than 21 different parameters that
on a more accurate representation of the exchange-energyay be adjusted, it seems to us that this set is too small, so
functional that includes the kinetic energy densityo im-  that it needs to be augmented. Recently, the so-called “G2/
prove overall energetics. Hence our approach provides a po§7” set has been introducédwhich adds a large number of
sible alternative to the current “hybrid’ansatzof exact- heats of formation to the original set. However, most of these
exchange mixing®%*®which has, to date, offered by far the molecules are substituted organic species, and it is even
best results available within the framework of density func-noted in Ref. 33 that density functional methods seem to
tional theory. By assessing the accuracy of the VSXC funcuniformly perform well for these systems. Further, many of
tional over a very large set of systems, including both a largehe molecules are quite larg&0—20 atomswhich is a sig-
training set and numerous other chemically interesting spenificant computational expense for a single element of a fit-
cies, it is concluded that VSXC appears to offer approxi-ting set. Hence we eschew the full G2/97 set as a fitting set.
mately the same energetic accuracy as the “hybrid” method$nstead, we begin with the original G2 set of atomization
mentioned previously without resorting to the use of exacenergie€’ and ionization potentials, and attempt to add to it
exchange. This is in accord with the conclusions reached ismall species that are expected to be more stringent tests for
Ref. 26 using a B88-type exchange functional and a correladensity functionals.
tion functional that models the Coulomb hdfe. As far as ionization potentialdPs) go, the G2 set is a

There are certain shortcomings of the VSXC form. Thenearly exhaustive list of the accurately known values. We
optimized geometries are in general quite good, but VSXChad difficulty obtaining with consistency the ionization po-
shows a strong overestimation of the bond lengths for theéentials for N, (?I1) and SH °B, because certain steps in our
alkali metal diatomics. Additionally, there are still certain fitting procedure required the calculations to be run without
“difficult” molecules such as G and FNO whose energetics symmetry which made converging to anything other than the
are not treated well by any of the XC functionals consideredyround state difficult. For this reason, we removed these two
in this paper. These shortcomings indicate that some imvalues from the set and compensated by adding the IPs of
provements still need to be made in order to obtain trulyF,, NO and G. Additionally, there are a number of mol-
uniformly satisfactory results from DFT. Future work may ecules in the G2/97 set which are shown in Ref. 33 to be
investigate the possibility of addressing these difficulties*difficult” cases for DFT. We have selected several of these
within a similar framework. Most notably, it would be in- systems, and also several additional molecules from the lit-
structive to take into consideration the uniform and nonuni-erature for which the heats of formation are accurately
form scaling requirements for the correlation enefy¥his  known. This procedure produced 28 additional atomization
would offer a much more physical approximation to the cor-energies.






