Macro- and microfeatures of Early Cambrian dolomitic microbialites from Tarim Basin, China

Ying Li, Hong-Xia Jiang, Ya-Sheng Wu, Wen-Qing Pan, Bao-Shou Zhang, Chong-Hao Sun, Guo Yang
2021 Journal of Palaeogeography  
AbstractThe fabrics of microbialites preserved in limestones are generally better than in dolostones. What are the fabrics of the microbialites preserved in heavily dolomitized dolostones? This paper presents an example of a strongly dolomitized Cambrian microbialite profile. The Xiaoerblak Formation (Cambrian Series 2 Stage 3 and lower Stage 4) of the Sugaitblak section in Aksu, Xinjiang Uygur Autonomous Region, China is mainly composed of microbial dolostones. Due to strong alteration by
more » ... alteration by diagenesis, their features, formation and environments have not been fully understood. Here, based on detailed observation on outcrops and thin sections, we show that this formation comprises four kinds of microbialites: laminite, thrombolite, thrombolitic laminite, and Renalcis framestone, in five intervals (Interval I to Interval V). We identified three main types of microbialite fabrics, i.e., clotted fabric, laminated fabric and skeletal fabric, and established a high-resolution vertical evolution sequence of the microbialites. The clotted fabric and the laminated fabric were further divided into subtypes. We found that the original fabrics were mainly affected by dolomitization, recrystallization and dissolution, and the alteration degree of the microbialite fabric is stronger in the lower part of this formation. The laminated fabric has the strongest resistance to diagenesis, followed by the clotted fabric. Based on studies of different rock types and sedimentary structures, we concluded that the sedimentary environment of Xiaoerblak Formation consists of three settings: a) Intervals I to III formed in restricted tidal flat environments, b) Interval IV and the lower part of Interval V in restricted deep subtidal environments, and c) upper part of Interval V in shallowing-up open subtidal environments.
doi:10.1186/s42501-020-00082-w fatcat:xs3xtwlyqrhynazrydxumnfilq