A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
On properties of analytical approximation for discretizing 2D curves and 3D surfaces
2017
Mathematical Morphology - Theory and Applications
AbstractThe morphological discretization is most commonly used for curve and surface discretization, which has been well studied and known to have some important properties, such as preservation of topological properties (e.g., connectivity) of an original curve or surface. To reduce its high computational cost, on the other hand, an approximation of the morphological discretization, called the analytical approximation, was introduced. In this paper, we study the properties of the analytical
doi:10.1515/mathm-2017-0002
fatcat:gumnwosbrvb3rgwbac6vxfdyqy