Structural heterogeneity and pressure-relaxation in compressed borosilicate glasses by in situ small angle X-ray scattering

S. Reibstein, L. Wondraczek, D. de Ligny, Sebastian Krolikowski, S. Sirotkin, J.-P. Simon, V. Martinez, B. Champagnon
2011 Journal of Chemical Physics  
We report on Brillouin and in situ small angle X-ray scattering (SAXS) analyses of topological heterogeneity in compressed sodium borosilicate glasses. SAXS intensity extrapolated to very low angular regimes, I(q = 0), is related to compressibility. From Brillouin scattering and analyses of the elastic properties of the glass, the Landau-Placzek ratio is determined and taken as a direct reflection of the amplitude of frozen-in density fluctuations. It is demonstrated that with increasing
more » ... pressure, topological (mid-and long-range) homogeneity of the glass increases significantly. Heating and cooling as well as isothermal scans were performed to follow the evolution of density fluctuations upon pressure recovery. For a sample with a fictive pressure p f of 470 MPa, complete recovery to p f = 0.1 MPa was observed to occur close to the glass transition temperature. The values of fictive and apparent fictive temperature, respectively, as obtained via the intersection method from plots of I(q = 0) vs. temperature were found in good agreement with previous calorimetric analyses. Isothermal scans suggest that mid-and long-range recovery govern macroscopic density relaxation.
doi:10.1063/1.3593399 pmid:21639451 fatcat:24bvix5umneejoclcv6jpww7ni