Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages [article]

Janusz Brzozowski, Corwin Sinnamom
<span title="2016-10-03">2016</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
A language L over an alphabet Σ is suffix-convex if, for any words x,y,z∈Σ^*, whenever z and xyz are in L, then so is yz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their
more &raquo; ... yntactic semigroups, and the quotient complexity of their atoms.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1610.00728v1</a> <a target="_blank" rel="external noopener" href="">fatcat:2ndc53ji5jfglbjzzpi6e4hzbu</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>