A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Kaplansky's theorem and Banach PI-algebras
1990
Pacific Journal of Mathematics
By the theorem of Kaplansky a bounded operator in a Banach space is algebraic if and only if it is locally algebraic. We prove a generalization of this theorem. As a corollary we obtain the analogous result for finite (or countable) families of operators. Further we prove that a Banach algebra is PI (i.e. it satisfies a polynomial identity) if and only if it is locally PI.
doi:10.2140/pjm.1990.141.355
fatcat:hfqgt5idh5fntcv4h43heidoci