Contrastive Learning for Sequential Recommendation [article]

Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Bolin Ding, Bin Cui
2021 arXiv   pre-print
Sequential recommendation methods play a crucial role in modern recommender systems because of their ability to capture a user's dynamic interest from her/his historical interactions. Despite their success, we argue that these approaches usually rely on the sequential prediction task to optimize the huge amounts of parameters. They usually suffer from the data sparsity problem, which makes it difficult for them to learn high-quality user representations. To tackle that, inspired by recent
more » ... es of contrastive learning techniques in the computer version, we propose a novel multi-task model called Contrastive Learning for Sequential Recommendation (CL4SRec). CL4SRec not only takes advantage of the traditional next item prediction task but also utilizes the contrastive learning framework to derive self-supervision signals from the original user behavior sequences. Therefore, it can extract more meaningful user patterns and further encode the user representation effectively. In addition, we propose three data augmentation approaches to construct self-supervision signals. Extensive experiments on four public datasets demonstrate that CL4SRec achieves state-of-the-art performance over existing baselines by inferring better user representations.
arXiv:2010.14395v2 fatcat:2pissecqs5dopo5nderaunptyq